首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   12篇
  国内免费   2篇
测绘学   5篇
大气科学   54篇
地球物理   86篇
地质学   131篇
海洋学   23篇
天文学   32篇
自然地理   34篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   11篇
  2017年   8篇
  2016年   23篇
  2015年   9篇
  2014年   14篇
  2013年   21篇
  2012年   12篇
  2011年   9篇
  2010年   18篇
  2009年   22篇
  2008年   15篇
  2007年   16篇
  2006年   12篇
  2005年   18篇
  2004年   11篇
  2003年   13篇
  2002年   5篇
  2001年   9篇
  2000年   7篇
  1999年   12篇
  1998年   10篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1987年   5篇
  1986年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1971年   2篇
  1966年   2篇
  1963年   1篇
  1958年   1篇
  1955年   2篇
  1950年   1篇
  1917年   1篇
  1913年   1篇
排序方式: 共有365条查询结果,搜索用时 156 毫秒
21.
Conclusion The World Data Center-A for Paleoclimatology, located in the NOAA/NGDC Paleoclimatology Program, is committed to providing the scientific community with easy access to all paleoenvironmental data. Efforts to make archived data readily available include international coordination of data acquisition, management, and distribution, sponsoring workshops and data cooperatives to facilitate the compilation of important data sets, development of a browse and visualization software package (PaleoVu), and dispersal of archived data on magnetic media or over ANONYMOUS FTP/INTERNET. The program publishes a semi-annual newsletter that highlights latest developments and accomplishments in the area of paleoenvironmental data for global change research. Contributions to the newsletter are welcome from researchers describing their efforts to coordinate the free flow of paleoclimate data throughout the international scientific community.For information on the program or to be added to the mailing list contact Mrs Mildred England (phone: 303-497-6227; Fax: 303 497-6513; e-mail: MKE@mail.ngdc.noaa.gov), NOAA National Geophysical Data Center, Paleoclimatology Program/World Data Center-A for Paleoclimatology, 325 Broadway, E/GC Boulder, CO 80303 USA  相似文献   
22.
The distribution of water within a soil profile can only be partly explained by the time distribution and rate of surface-water input. Observed differences in soil moisture within the unsaturated zone result from the interaction of surface-water inputs with spatially inhomogeneous soil characteristics. Water which initially percolates vertically is differentially impeded as a result of subtle textural changes in the soil, and is then preferentially retained in such zones of transition, causing large differences in soil-water content to occur. The scale of this vertical variability is of tenths of metres, whilst lateral variability of soil moisture reflects textural changes over a few metres. The observed influence of small-scale heterogeneity on soil-water content suggests that the conventional assumptions of isotropicity and homogeneity of the textural and hydraulic properties of porous media used in drainage basin and hillslope hydrological models need scrutiny, even for single stratigraphic units.  相似文献   
23.
A detailed study of the subsurface thermal regime at the Upper Stillwater dam site, Uinta Mountains, northeast Utah, has been made. Temperature measurements were made in 36 drillholes located within a 1 km2 area and ranging in depth from 20 to 97 m. Holes less than about 40 m deep were used only to obtain information about spatial variations in mean annual surface temperature. Several holes in or near talus slopes at the sides of the canyons have temperature minima approaching 0°C between 10 and 20 m indicating the presence of year-round ice at the base of the talus. Another set of holes show transient thermal effects of surface warming resulting from clearing of a construction site 3.5 years prior to our measurements. Most of the remaining holes show conductive behavior and have gradients ranging from 13° to 17°C km−1. Measurements made on 44 core samples yield a thermal conductivity of 5.6 (std. dev. 0.35) W m−1 K−1 for the Precambrian quartzite present. Surface heat flow estimates for these holes range from 70 to 100 mW m−2. However, the local disturbance of the thermal field by topography and microclimate is considerable. A finite difference method used to model these effects yielded a locally corrected Upper Stillwater heat flow of about 75 mW m−2. A final correction to account for the effects of refraction of heat from the low conductivity sedimentary rocks in the Uinta Basin into the high conductivity quartzite at the dam site, produced a regionally corrected Upper Stillwater heat flow between 60 and 65 mW m−2. This value is consistent with the observed heat flow of 60 mW m−2 in the Green River Basin to the north and the Uinta Basin to the south.  相似文献   
24.
Ground pressure observations made at Macao (22N, 113E) from 1953 to 1991 are analyzed and compared with the stratospheric quasi-biennial oscillation (QBO) data obtained during the same interval. The periods of the two phenomena and their time evolution are found to be close to each other. Furthermore, the time series of the stratospheric winds and the S2(p) QBO signature are highly correlated, thus confirming earlier analysis. On this basis, pressure measurements obtained at Batavia (now Djakarta: 6S, 107E) from 1870 to 1944 are used to trace back the QBO phenomenon before the advent of systematic stratospheric balloon measurements. The inferred period, which varies between 25 and 32 months, suggests that the QBO has been present in the atmosphere at least since 1870.  相似文献   
25.
26.
27.
Shear wave splitting analyses have been carried out using teleseismic data from broad-band seismograph stations deployed at temporary and permanent locations in Dronning Maud Land (DML), Antarctica. In most cases, the observed anisotropy can be related to major tectonic events that formed the present-day Antarctic continent. We rule out an anisotropic contribution from recent asthenospheric flow. At the Russian base Novolazarevskaya near the coast in central DML, waveform inversion suggests a two-layer model where the fast direction of the upper layer is oriented parallel to Archean fabrics in the lithosphere, whereas the anisotropy of the lower layer is interpreted to have been created during the Jurassic Gondwana break-up. Recordings at the South African base Sanae IV, however, show enigmatic results. For narrow backazimuthal segments, splitting parameters show strong variations together with a multitude of isotropic measurements, indicative of complex scattering that cannot be explained by simple one- or two-layer anisotropic models. In the interior of the continent, the data are consistent with single-layer anisotropy, but show significant spatial variations in splitting parameters. A set of temporary stations across the Heimefront shear zone in western DML yield splitting directions that we interpret as frozen anisotropy from Proterozoic assembly of the craton. An abrupt change in fast axis direction appears to mark a suture between the Grunehogna craton, a fragment of the Kalahari–Kaapvaal craton in southern Africa and the Mesoproterozoic Maudheim Province.  相似文献   
28.
This paper focuses on the influence of the initial void ratio on the evolution of the passive earth pressure and the formation of shear zones in a dry sand body behind a retaining wall. For the numerical simulation a rigid and very rough retaining wall undergoing a horizontal translation against the backfill is considered. The essential mechanical properties of cohesionless granular soil are described with a micro-polar hypoplastic model which takes into account stresses and couple stresses, pressure dependent limit void ratios and the mean grain size as a characteristic length. Numerical investigations are carried out with an initially medium dense and initially loose sand using a homogeneous and random distribution of the initial void ratio. The geometry of calculated shear zones is discussed and compared with a corresponding laboratory model test.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号