首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
大气科学   8篇
地球物理   8篇
地质学   47篇
海洋学   21篇
天文学   9篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
61.
Abstract

A new earth system climate model of intermediate complexity has been developed and its climatology compared to observations. The UVic Earth System Climate Model consists of a three‐dimensional ocean general circulation model coupled to a thermodynamic/dynamic sea‐ice model, an energy‐moisture balance atmospheric model with dynamical feedbacks, and a thermomechanical land‐ice model. In order to keep the model computationally efficient a reduced complexity atmosphere model is used. Atmospheric heat and freshwater transports are parametrized through Fickian diffusion, and precipitation is assumed to occur when the relative humidity is greater than 85%. Moisture transport can also be accomplished through advection if desired. Precipitation over land is assumed to return instantaneously to the ocean via one of 33 observed river drainage basins. Ice and snow albedo feedbacks are included in the coupled model by locally increasing the prescribed latitudinal profile of the planetary albedo. The atmospheric model includes a parametrization of water vapour/planetary longwave feedbacks, although the radiative forcing associated with changes in atmospheric CO2 is prescribed as a modification of the planetary longwave radiative flux. A specified lapse rate is used to reduce the surface temperature over land where there is topography. The model uses prescribed present‐day winds in its climatology, although a dynamical wind feedback is included which exploits a latitudinally‐varying empirical relationship between atmospheric surface temperature and density. The ocean component of the coupled model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model 2.2, with a global resolution of 3.6° (zonal) by 1.8° (meridional) and 19 vertical levels, and includes an option for brine‐rejection parametrization. The sea‐ice component incorporates an elastic‐viscous‐plastic rheology to represent sea‐ice dynamics and various options for the representation of sea‐ice thermodynamics and thickness distribution. The systematic comparison of the coupled model with observations reveals good agreement, especially when moisture transport is accomplished through advection.

Global warming simulations conducted using the model to explore the role of moisture advection reveal a climate sensitivity of 3.0°C for a doubling of CO2, in line with other more comprehensive coupled models. Moisture advection, together with the wind feedback, leads to a transient simulation in which the meridional overturning in the North Atlantic initially weakens, but is eventually re‐established to its initial strength once the radiative forcing is held fixed, as found in many coupled atmosphere General Circulation Models (GCMs). This is in contrast to experiments in which moisture transport is accomplished through diffusion whereby the overturning is reestablished to a strength that is greater than its initial condition.

When applied to the climate of the Last Glacial Maximum (LGM), the model obtains tropical cooling (30°N‐30°S), relative to the present, of about 2.1°C over the ocean and 3.6°C over the land. These are generally cooler than CLIMAP estimates, but not as cool as some other reconstructions. This moderate cooling is consistent with alkenone reconstructions and a low to medium climate sensitivity to perturbations in radiative forcing. An amplification of the cooling occurs in the North Atlantic due to the weakening of North Atlantic Deep Water formation. Concurrent with this weakening is a shallowing of, and a more northward penetration of, Antarctic Bottom Water.

Climate models are usually evaluated by spinning them up under perpetual present‐day forcing and comparing the model results with present‐day observations. Implicit in this approach is the assumption that the present‐day observations are in equilibrium with the present‐day radiative forcing. The comparison of a long transient integration (starting at 6 KBP), forced by changing radiative forcing (solar, CO2, orbital), with an equilibrium integration reveals substantial differences. Relative to the climatology from the present‐day equilibrium integration, the global mean surface air and sea surface temperatures (SSTs) are 0.74°C and 0.55°C colder, respectively. Deep ocean temperatures are substantially cooler and southern hemisphere sea‐ice cover is 22% greater, although the North Atlantic conveyor remains remarkably stable in all cases. The differences are due to the long timescale memory of the deep ocean to climatic conditions which prevailed throughout the late Holocene. It is also demonstrated that a global warming simulation that starts from an equilibrium present‐day climate (cold start) underestimates the global temperature increase at 2100 by 13% when compared to a transient simulation, under historical solar, CO2 and orbital forcing, that is also extended out to 2100. This is larger (13% compared to 9.8%) than the difference from an analogous transient experiment which does not include historical changes in solar forcing. These results suggest that those groups that do not account for solar forcing changes over the twentieth century may slightly underestimate (~3% in our model) the projected warming by the year 2100.  相似文献   
62.
63.
Borshcheva  E. V.  Wiebe  D. S. 《Astronomy Reports》2022,66(5):393-418
Astronomy Reports - The influence of the multilayer structure of cosmic dust ice mantles on the chemical processes occurring in them before, during and after protoplanetary disc ourbursts is...  相似文献   
64.
Production and consumption activities in industrialized countries are increasingly dependent on material and energy resources from other world regions and imply significant economic and environmental consequences in other regions around the world. The substitution of domestic material extraction and processing through imports is also shifting environmental burden abroad and thus extends the responsibility for environmental impacts as well as social consequences from the national to the global level. Based on the results of the Global Resource Accounting Model, this paper presents the first trade balances and consumption indicators for embodied materials in a time series from 1995 to 2005. The model includes 53 countries and two world regions. It is based on the 2009 edition of the input–output tables and bilateral trade data published by the Organisation for Economic Co-operation and Development (OECD) and is extended by physical data on global material extraction. The results quantify the global shift of embodied material resources from developing and emerging countries to the industrialized world. In addition to the level of industrialization and wealth, population density is identified as an important factor for the formation of physical trade patterns. Exports of embodied materials of less densely populated countries tend to surpass their imports, and vice versa. We also provide a quantitative comparison between conventionally applied indicators on material consumption based on direct material flows and indicators including embodied material flows. We show that the difference between those two indicators can be as much as 200%, calling for an adjustment of conventional national material flow indicators. Multi-regional input–output models prove to be a useful methodological approach to derive globally consistent and comprehensive data on material embodiments of trade and consumption.  相似文献   
65.
High-frequency (120 and 420 kHz) sound was used to survey sound scatterers in the water over Georges Bank. In addition to the biological sound scatterers (the plankton and micronekton), scattering associated with internal waves and suspended sediment was observed. Volume backscattering was more homogeneous in the vertical dimension (with occasional patches) in the shallow central portion of the Bank where there is significant mixing. In the deeper outer portion of the Bank where the water is stratified, volume backscattering was layered and internal waves modulated the vertical position of the layers in the pycnocline. The internal waves typically had amplitudes of 5-20 m, but sometimes much higher. Species composition and size data from samples of the animals and suspended sediment used in conjunction with acoustic scattering models revealed that throughout the region the animals generally dominate the scattering, but there are times and places where sand particles (suspended as high as up to the sea surface) can dominate. The source of the scattering in the internal waves is probably due to a combination of both animals and sound-speed microstructure. Determination of their relative contributions requires further study  相似文献   
66.
We analyze the influence of errors in the rate constants of gas-phase chemical reactions on the model abundances of molecules in the interstellar medium using the UMIST 95 chemical database. By randomly varying the rate constants within the limits of the errors given in UMIST 95, we have estimated the scatters in theoretical abundances for dark and diffuse molecular clouds. All of the species were divided into six groups by the scatter in their model equilibrium abundances when varying the rate constants of chemical reactions. The distribution of the species in groups depends on the physical conditions. The scatters in the abundances of simple species lie within 0.5–1 order of magnitude, but increase significantly as the number of atoms in the molecule increases. We suggest a simple method for identifying the reactions whose rate constants have the strongest effect on the abundance of a selected species. This method is based on an analysis of the correlations between the abundance of species and the reaction rate constants and allows the extent to which an improvement in the rate constant of a specific reaction reduces the uncertainty in the abundance of the species concerned to be directly estimated.  相似文献   
67.
68.
From the Hensen net toward four-dimensional biological oceanography   总被引:1,自引:0,他引:1  
The development of quantitative zooplankton collecting systems began with [Hensen, 1887] and [Hensen, 1895]). Non-opening closing nets, opening closing nets (mostly messenger based), high-speed samplers, and planktobenthos net systems all had their start in his era — the late 1800s and early 1900s. This was also an era in which many of the fundamental questions about the structure and dynamics of the plankton in the worlds oceans were first posed. Fewer new systems were introduced between 1912 and 1950 apparently due in part to the two World Wars. The continuous plankton recorder stands out as a truly innovative device developed during this period (Hardy 1926b Nature, London118, 630). Resurgence in development of mechanically-based instruments occurred during the 1950s and 1960s. A new lineage of high-speed samplers, the Gulf series, began in the 1950s and a number of variants were developed in the 1960s and 1970s. Net systems specifically designed to collect neuston first appeared in the late 1950s. During the 1960s, many focused field and experimental tank experiments were carried out to investigate the hydrodynamics of nets, and much of our knowledge concerning net design and construction criteria was developed. The advent of reliable electrical conducting cables and electrically-based control systems during this same period gave rise first to a variety of cod-end samplers and then to the precursors of the acoustically and electronically-controlled multi-net systems and environmental sensors, which appeared in the 1970s. The decade of the 1970s saw a succession of multi-net systems based both on the Bé multiple plankton sampler and on the Tucker trawl. The advent of the micro-computer stimulated and enabled the development of sophisticated control and data logging electronics for these systems in the 1980s. In the 1990s, acoustic and optical technologies gave rise to sensor systems that either complement multiple net systems or are deployed without nets. Multi-sensor systems with high data telemetry rates through electro-optical cable are now being deployed in towed bodies and on remotely operated vehicles. In the offing are new molecular technologies to identify species in situ, and realtime data analysis, image processing, and 3D/4D display. In the near future, it is likely that the use of multi-sensor systems deployed on autonomous vehicles will yield world wide coverage of the distribution and abundance of zooplankton.  相似文献   
69.
70.
We evaluate the capacity of a regional climate model to simulate the statistics of extreme events, and also examine the effect of differing horizontal resolution, at the scale of individual hydrological basins in the topographically complex province of British Columbia, Canada. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45?km (CRCM45) horizontal resolution driven at the lateral boundaries by global reanalysis over the period 1973–1995. The simulations were evaluated with ANUSPLIN, a daily observational gridded surface temperature and precipitation product and with meteorological data recorded at 28 stations within the upper Peace, Nechako, and upper Columbia River basins. In this work, we focus largely on a comparison of the skill of each model configuration in simulating the 90th percentile of daily precipitation (PR90). The companion paper describes the results for a wider range of temperature and precipitation extremes over the entire WCan domain.

Over all three watersheds, both simulations exhibit cold biases compared with observations, with the bias exacerbated at higher resolution. Although both simulations generally display wet biases in median precipitation, CRCM15 features a reduced bias in PR90 in all three basins in summer and throughout the year in the upper Columbia River basin. However, the higher resolution model is inferior to CRCM45 with respect to rarer heavy precipitation events and also displays high spatial variability and lower spatial correlations with ANUSPLIN compared with the coarser resolution model. A reduction in the range of PR90 biases over the upper Columbia basin is noted when the 15?km results are averaged to the 45?km grid. This improvement is partly attributable to the averaging of errors between different elevation data used in the gridded observations and CRCM, but the sensitivity of CRCM15 to resolved topography is also clear from spatial maps of seasonal extremes. At the station scale, modest but systematic reductions in the bias of PR90 relative to ANUSPLIN are again found when the CRCM15 results are averaged to the 45?km grid. Furthermore, the annual cycle of inter-station spatial variance in the upper Columbia River basin is well reproduced by CRCM15 but not by ANUSPLIN or CRCM45. The former result highlights the beneficial effect of spatial averaging of small-scale climate variability, whereas the latter is evidently a demonstration of the added value at high resolution vis-à-vis the improved simulation of precipitation at the resolution limit of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号