首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
测绘学   1篇
地球物理   7篇
地质学   6篇
天文学   2篇
自然地理   4篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
We present the results of a study of solar wind velocity and magnetic field correlation lengths over the last 35 years. The correlation length of the magnetic field magnitude λ |B| increases on average by a factor of two at solar maxima compared to solar minima. The correlation lengths of the components of the magnetic field lBXYZ\lambda_{B_{XYZ}} and of the velocity lVYZ\lambda_{V_{YZ}} do not show this change and have similar values, indicating a continual turbulent correlation length of around 1.4×106 km. We conclude that a linear relation between λ |B|, VB 2, and Kp suggests that the former is related to the total magnetic energy in the solar wind and an estimate of the average size of geoeffective structures, which is, in turn, proportional to VB 2. By looking at the distribution of daily correlation lengths we show that the solar minimum values of λ |B| correspond to the turbulent outer scale. A tail of larger λ |B| values is present at solar maximum causing the increase in mean value.  相似文献   
12.
Physical and hydraulic properties of sediment from two karst aquifers were measured to determine (1) the similarity of sediment between karst aquifer systems and (2) the importance of sediment in modeling flow through karst aquifers. The sediment from the two systems was similar in size and composition. Within both aquifers, the silt-sized sediment was composed primarily of quartz, with minor amounts of plagioclase and clays. Hydraulic conductivity of the sediment measured directly (falling-head test) ranged from 1.61×10−7 to 1.33×10−6 m s–1 and estimated using the Campbell equation ranged from 8.30×10−8 to 8.98×10−7 m s–1. These values of hydraulic conductivity fall within the span of hydraulic conductivities for carbonate rocks, indicating that the sediment and carbonate matrix could be represented as one mathematical unit in modeling flow through karst aquifers. Statistical agreement in the hydraulic conductivity values generated by the two methods indicates that the estimation technique could be used to calculate hydraulic conductivities; thus allowing karst scientist to collect bulk sediment samples instead of having to collect cores from within karst aquifers. Electronic Publication  相似文献   
13.
We present isothermal volume compression behavior of two polycrystalline (Mg,Fe)O samples with FeO = 39 and 78 mol% up to ~90 GPa at 300 K using synchrotron X-ray diffraction and neon as a pressure-transmitting medium. For the iron-rich (Mg0.22Fe0.78)O sample, a structural transition from the B1 structure to a rhombohedral structure was observed at 41.6 GPa, with no further indication of changes in structural or compression behavior changes up to 93 GPa. In contrast, a change in the compression behavior of (Mg0.61Fe0.39)O was observed during compression at P ≥ 71 GPa and is indicative of a spin crossover occurring in the Fe2+ component of (Mg0.61Fe0.39)O. The low-spin state exhibited a volume collapse of ~3.5%, which is a larger value than what was observed for a similar composition in a laser-heated NaCl medium. Upon decompression, the volume of the high-spin state was recovered at approximately 65 GPa. We therefore bracket the spin crossover at 65 ≤ P (GPa) ≤ 77 at 300 K (Mg0.61Fe0.39)O. We observed no deviation from the B1 structure in (Mg0.61Fe0.39)O throughout the pressure range investigated.  相似文献   
14.
Uplift of a broad area centered ~6 km west of the summit of South Sister volcano started in September 1997 (onset estimated from model discussed in this paper) and was continuing when surveyed in August 2006. Surface displacements were measured whenever possible since August 1992 with satellite radar interferometry (InSAR), annually since August 2001 with GPS and leveling surveys, and with continuous GPS since May 2001. The average maximum displacement rate from InSAR decreased from 3–5 cm/yr during 1998–2001 to ~1.4 cm/yr during 2004–2006. The other datasets show a similar pattern, i.e., surface uplift and extension rates decreased over time but deformation continued through August 2006. Our best-fit model to the deformation data is a vertical, prolate, spheroidal point-pressure source located 4.9–5.4 km below the surface. The source inflation rate decreased exponentially during 2001–2006 with a 1/e decay time of 5.3 ± 1.1 years. The net increase in source volume from September 1997 to August 2006 was 36.5–41.9 x 106 m3. A swarm of ~300 small (M max = 1.9) earthquakes occurred beneath the deforming area in March 2004; no other unusual seismicity has been noted. Similar deformation episodes in the past probably would have gone unnoticed if, as we suspect, most are small intrusions that do not culminate in eruptions.  相似文献   
15.
16.
Prediction of the Quality and Quantity of Maramec Spring Water   总被引:2,自引:0,他引:2  
  相似文献   
17.
18.
19.
Fluctuations in the solar wind plasma and magnetic field are well described by the sum of two power law distributions. It has been postulated that these distributions are the result of two independent processes: turbulence, which contributes mainly to the smaller fluctuations, and crossing the boundaries of flux tubes of coronal origin, which dominates the larger variations. In this study we explore the correspondence between changes in the magnetic field with changes in other solar wind properties. Changes in density and temperature may result from either turbulence or coronal structures, whereas changes in composition, such as the alpha-to-proton ratio are unlikely to arise from in-transit effects. Observations spanning the entire ACE dataset are compared with a null hypothesis of no correlation between magnetic field discontinuities and changes in other solar wind parameters. Evidence for coronal structuring is weaker than for in-transit turbulence, with only ∼ 25% of large magnetic field discontinuities associated with a significant change in the alpha-to-proton ratio, compared to ∼ 40% for significant density and temperature changes. However, note that a lack of detectable alpha-to-proton signature is not sufficient to discount a structure as having a solar origin.  相似文献   
20.
The Esla tectonic unit lies along the southern boundary of the Cantabrian–Asturian Arc, a highly curved foreland fold-thrust belt that was deformed during the final amalgamation of the Pangea supercontinent. Previous structural and paleomagnetic analyses of the Cantabrian–Asturian Arc suggest a two-stage tectonic history in which an originally linear belt was bent into its present configuration, creating an orocline. The Esla tectonic unit is a particularly complex region due to the interaction of rotating thrust sheets from the southern limb of the arc and the southward-directed thrusts of the Picos de Europa tectonic domain during late-stage north–south shortening and oroclinal bending. These structural interactions resulted in intense modification of early-phase thin-skinned tectonic structures that were previously affected by a deeper out-of-sequence antiformal stack that passively deformed the early thrust stack. A total of 75 paleomagnetic sites were collected from the Portilla and Santa Lucia formations, two carbonate passive-margin reef platform units from the middle Devonian. Similar to other regions of the Cantabrian–Asturian Arc, Esla Unit samples carry a secondary remanent magnetization that was acquired after initial thrusting and folding of Variscan deformation in the late Carboniferous. Protracted deformation during late-stage oroclinal bending caused reactivation of existing thrust sheets that include the Esla and younger Corniero and Valbuena thrusts. When combined with existing structural data and interpretations, these data indicate that the present-day sinuosity of the Esla Unit is the consequence of both secondary rotation of originally linear features in the western Esla exposures (e.g., frontal thrusts), and secondary modification and tightening of originally curvilinear features in the eastern Esla exposures (e.g., hanging-wall lateral/oblique ramps). Differences in structural style between the Esla and other tectonic units of the arc highlight the complex kinematics of oroclinal bending, which at the orogen-scale buckled an originally linear, north–south (in present-day coordinates) trending Cantabrian–Asturian thrust belt during the final stages of Pangea amalgamation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号