首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   6篇
  国内免费   1篇
地球物理   9篇
地质学   54篇
海洋学   7篇
天文学   11篇
自然地理   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1997年   3篇
  1995年   1篇
  1991年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有82条查询结果,搜索用时 0 毫秒
51.
Estuarine and coastal sediment transport is characterised by the transport of both sand-sized particles (of diameter greater than 63?μm) and muddy fine-grained sediments (silt, diameter less than 63?μm; clay, diameter less than 2?μm). These fractions are traditionally considered as non-cohesive and cohesive, respectively, because of the negligible physico-chemical attraction that occurs between sand grains. However, the flocculation of sediment particles is not only caused by physico-chemical attraction. Cohesivity of sediment is also caused by biology, in particular the sticky extra-cellular polymeric substances secreted by diatoms, and the effect of biology in binding sediment particles can be much larger than that of physico-chemical attraction. As demonstrated by Manning (2008) and further expanded in part 1 of this paper (Manning et al., submitted), the greater binding effect of biology allows sand particles to flocculate with mud. In many estuaries, both the sand and fine sediment fractions are transported in significant quantities. Many of the more common sediment transport modelling suites now have the capability to combine mud and sand transport. However, in all of these modelling approaches, the modelling of mixed sediment transport has still essentially separated the modelling of sand and mud fractions assuming that these different fractions do not interact except at the bed. However, the use of in situ video techniques has greatly enhanced the accuracy and reliability of settling velocity measurements and has led to a re-appraisal of this widely held assumption. Measurements of settling velocity in mixed sands presented by Manning et al. (2009) have shown strong evidence for the flocculation of mixed sediments, whilst the greater understanding of the role of biology in flocculation has identified mechanisms by which this mud-sand flocculation can occur. In the first part of this paper (Manning et al., submitted), the development of an empirical flocculation model is described which represents the interaction between sand and mud particles in the flocculation process. Measurements of the settling velocity of varying mud-sand mixtures are described, and empirical algorithms governing the variation of settling velocity with turbulence, suspended sediment concentration and mud-sand content are derived. The second part of this paper continues the theme of examination of the effects of mud-sand interaction on flocculation. A 1DV mixed transport model is developed and used to reproduce the vertical transport of mixed sediment fractions. The 1DV model is used to reproduce the measured settling velocities in the laboratory experiments described in the part 1 paper and also to reproduce measurements of concentration of mixed sediments in the Outer Thames. In both modelling exercises, the model is run using the algorithms developed in part 1 and repeated using an assumption of no interaction between mud and sand in the flocculation process. The results of the modelling show a significant improvement in the ability of the 1DV to reproduce the observed sediment behaviour when the empirical equations are used. This represents further strong evidence of the interaction between sand and mud in the flocculation process.  相似文献   
52.
As the number of manmade structures installed on the seafloor is increasing rapidly, we seek to understand the impact of these immobile obstacles on marine geomorphological processes, such as the evolution of bedforms. A 5.8 m diameter monopile foundation was installed at the case study offshore windfarm approximately 30 m ahead of an approaching barchan (crescent-shaped) dune. The impact of the monopile on the dune's evolution was analysed using six multibeam bathymetry surveys spanning 20 years. To substantiate this analysis, coupled three-dimensional numerical modelling of flows and sediment was conducted in which the scour inducing bed shear stresses were calculated from the modelled turbulent kinetic energy. Following the installation of the monopile, the mid-section of the dune accelerated and stretched in the direction of the wake of the monopile. Four years after the monopile's installation the rest of the dune had caught up, flattening out the slip face within half the dune's length downstream of the monopile. Due to the modified flow field, the dune was scoured deeply at the base of the monopile to a depth of 6.8 m (supported by the model results that predicted a scour depth exceeding 2 m over a period of just a few days). The surveyed volume of material scoured amounted to 8% of the total dune volume. Whilst the process of scouring occurs at a timescale of days to weeks, the dune migrated on average by 25 m/yr. The difference in the timescale of the two processes allowed the scouring to occur through the full thickness of the dune. The scoured dune profile recovered rapidly once the dune migrated downstream of the monopile. This article demonstrates how large geomorphological features can intercept and migrate past a monopile foundation without long-lasting impacts on the integrity of the feature or the foundation. © 2020 John Wiley & Sons, Ltd.  相似文献   
53.
This study investigates the behaviour of the geochronometers zircon, monazite, rutile and titanite in polyphase lower crustal rocks of the Kalak Nappe Complex, northern Norway. A pressure–temperature–time–deformation path is constructed by combining microstructural observations with P–T conditions derived from phase equilibrium modelling and U–Pb dating. The following tectonometamorphic evolution is deduced: A subvertical S1 fabric formed at ~730–775 °C and ~6.3–9.8 kbar, above the wet solidus in the sillimanite and kyanite stability fields. The event is dated at 702 ± 5 Ma by high‐U zircon in a leucosome. Monazite grains that grew in the S1 fabric show surprisingly little variation in chemical composition compared to a large spread in (concordant) U–Pb dates from c. 800 to 600 Ma. This age spread could either represent protracted growth of monazite during high‐grade metamorphism, or represent partially reset ages due to high‐T diffusion. Both cases imply that elevated temperatures of >600 °C persisted for over c. 200 Ma, indicating relatively static conditions at lower crustal levels for most of the Neoproterozoic. The S1 fabric was overprinted by a subhorizontal S2 fabric, which formed at ~600–660 °C and ~10–12 kbar. Rutile that originally grew during the S1‐forming event lost its Zr‐in‐rutile and U–Pb signatures during the S2‐forming event. It records Zr‐in‐rutile temperatures of 550–660 °C and Caledonian ages of 440–420 Ma. Titanite grew at the expense of rutile at slightly lower temperatures of ~550 °C during ongoing S2 deformation; U–Pb ages of c. 440–430 Ma date its crystallization, giving a minimum estimate for the age of Caledonian metamorphism and the duration of Caledonian shearing. This study shows that (i) monazite can have a large spread in U–Pb dates despite a homogeneous composition; (ii) rutile may lose its Zr‐in‐rutile and U–Pb signature during an amphibolite facies overprint; and (iii) titanite may record crystallization ages during retrograde shearing. Therefore, in order to correctly interpret U–Pb ages from different geochronometers in a polyphase deformation and reaction history, they are ideally combined with microstructural observations and phase equilibrium modelling to derive a complete P–T–t–d path.  相似文献   
54.
The Setschenow and McDevit—Long equations are applied to aromatic hydrocarbons in seawater by using solute surface area and recently available solubility data to evaluate the Setschenow constant. It is demonstrated that this approach avoids a previously encountered problem with the McDevit-Long equation while also pointing out fundamental theoretical discrepancies. Compounds that do not fit the presented semi-empirical relationship are of interest as they may exhibit abnormal partitioning behavior in seawater. Using this approach it is suggested that 1,2-benzanthracene and benzo(a)pyrene exhibit abnormal solution behavior in seawater.  相似文献   
55.
56.
Following seminal studies in the Lachlan Fold Belt (southeastern Australia), it has become almost axiomatic that metaluminous granites derive from infracrustal precursors, whereas strongly peraluminous plutons have metasedimentary or supracrustal sources, as reflected in the I- and S-type designation. Recently, zircon saturation thermometry has been used to further subdivide I-type granites into high- and low-temperature categories. That low-temperature I-type granites evolved by restite separation from magmas generated in the zircon stability field is implicit in this classification. To explore this hypothesis, we report an ion microprobe U-Pb (zircon) study into three hallmark ‘low-temperature’ Lachlan Fold Belt I-type suites. The combined patterns of zircon age inheritance and bulk rock Zr trends suggest that each suite formed from magmas that were initially zircon-undersaturated, and that fractional crystallisation, not restite unmixing, was the dominant differentiation process. The low temperature status presently applied to these rocks cannot therefore be justified. The inherited zircons in these I-type granites reflect melting and assimilation of metasedimentary rock, and testify to a supracrustal source component. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
57.
Further Characterisation of the 91500 Zircon Crystal   总被引:28,自引:2,他引:28  
This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.  相似文献   
58.
Determining the timing, duration and mechanism of tectonic events within an orogenic cycle, such as ocean subduction, continent–continent collision or gravitational collapse, is challenging, especially in ancient orogenic belts. Variations in the tectonic transport direction, however, can be used as a guide to these stages of orogeny. While thrust sheets within the Caledonian allochthon in north Norway were emplaced broadly eastwards perpendicular to the trend of the orogen, many features indicate material transport in other orientations. One dominant feature of the Magerøy Nappe, sitting above and infolded with the Kalak Nappe Complex, is the development of a strong N–S lineation orthogonal to the main transport direction. Strain measurements, in part determined by a new method, are used, in the context of the regional structural data to identify the critical stage in orogeny when compressional forces are balanced by orogen-parallel lateral escape. Quantitative 3-D strain estimation in the Magerøy Nappe indicates prolate deformation with c. 50% horizontal shortening parallel to the thrusting direction (E–W) and c. 200% extension along the orogenic strike (N–S) with c. 30% vertical shortening. Temporal constraint on this fabric is provided by Ar–Ar isotopic analysis of undeformed white mica in cross-cutting granitic pegmatites. These data show that prolate deformation occurred before the white mica cooling age of 416 ± 4 Ma, while the previously determined depositional age of the Hellefjord Schist indicates that it occurred after 438 ± 4 Ma. A granitic pegmatite that intruded the Hellefjord Schist after an initial deformation phase but during or prior to a later deformation, has been dated at 431 ± 2 Ma by U–Pb zircon. A previous lower age constraint on this deformation of 428 ± 5 Ma is given by metamorphic zircon overgrowths on fractured grains. These results constrain the continental collision between Baltica and Laurentia in Finnmark to the interval c. 431–428 Ma. Placed in a regional context, these results indicate that lateral escape was orthogonal to the thrusting direction and occurred during the continent–continent collision stage in the Scandian Orogeny before gravitationally driven collapse.  相似文献   
59.
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle.  相似文献   
60.
Precision and accuracy in SIMS zircon geochronology strongly depend on the method of determination of the interelement ion ratios (e.g., 206Pb/238U) from the measured secondary ion ratios (206Pb+/238U+). Six possible U–Pb calibrations (Pb/U–UO2/U, Pb/U–UO/U, Pb/U–UO2/UO, Pb/UO–UO2/U, Pb/UO–UO/U, Pb/UO–UO2/UO) based on simple power law relationships, and Pb/UO2‐related one‐ and two‐ (a power law) dimensional ones were compared using data acquired on the 91500 zircon reference material from one hundred measurement sessions, to determine the most statistically reliable scheme. Taking advantage of U oxide species (UO and UO2) over atomic U, due to their similar energy distribution to Pb and higher intensities, the data calibrated with Pb/UO–UO2/UO showed the smallest mean uncertainties and dispersions, and provided the best‐fit calibration curve consistently. Although it was demonstrated with Temora 2 that the unknown zircon age was not changed significantly by different calibrations, its precision could be improved using the Pb/UO–UO2/UO calibration in zircon geochronology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号