首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   12篇
  国内免费   3篇
测绘学   9篇
大气科学   67篇
地球物理   122篇
地质学   285篇
海洋学   36篇
天文学   109篇
综合类   4篇
自然地理   23篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   28篇
  2012年   11篇
  2011年   27篇
  2010年   23篇
  2009年   42篇
  2008年   18篇
  2007年   25篇
  2006年   18篇
  2005年   24篇
  2004年   19篇
  2003年   17篇
  2002年   14篇
  2001年   6篇
  2000年   13篇
  1999年   8篇
  1998年   5篇
  1997年   11篇
  1996年   6篇
  1995年   6篇
  1994年   10篇
  1993年   9篇
  1992年   6篇
  1990年   5篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1982年   16篇
  1981年   10篇
  1980年   13篇
  1979年   5篇
  1978年   7篇
  1977年   8篇
  1976年   9篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1972年   5篇
  1971年   9篇
  1970年   5篇
  1968年   6篇
  1967年   7篇
  1959年   7篇
  1954年   5篇
排序方式: 共有655条查询结果,搜索用时 234 毫秒
551.
A number of previous studies using models of integrated surface‐subsurface hydrology have adopted the Panday and Huyakorn (P&H) tilted V‐catchment test case (Panday S, Huyakorn PS. 2004. A fully coupled spatially distributed model for evaluating surface/subsurface flow. Advances in Water Resources 27: 361–382) to show inter‐code comparability. The P&H test case is used to evaluate models that simulate a broad range of hydrological processes, and yet only the catchment outflow hydrograph has been presented as verification of the consistency between codes. Therefore, a more comprehensive evaluation of the surface‐subsurface hydrology of the P&H case is needed. This study explores the internal catchment functioning of the P&H case, using the popular catchment simulator MODHMS. The processes leading to streamflow generation in the model are illustrated, including separation of overland flow (OLF) and groundwater discharge to the stream. The results identify non‐physical flow processes due to the problem set‐up, and modifications to the P&H case are suggested that include changes to stream roughness and incision of the stream channel to overcome these shortcomings. A modified P&H case produced more plausible transfers between OLF and the stream, and an increased groundwater discharge to the stream (6·5% of streamflow in the modified case compared to 0·5% in the original case). Despite changes to internal flow processes, near‐identical outflow hydrographs were obtained, showing the importance of considering and comparing internal flow processes when using surface‐subsurface hydrology test cases to evaluate integrated hydrological simulators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
552.
Groundwater responses in temperate mountainous terrain are assessed using groundwater, hydrometric and climatic data from southern British Columbia, Canada. Well and stream hydrographs are analysed using a series of diagnostic tools including time series plots, hysteresis plots, and cross‐correlation plots. Characterizing the seasonal timing of the response requires consideration of the hydroclimatology of the region: rainfall‐dominated (pluvial), snowmelt‐dominated (nival) or hybrid (mixture of rain and snow). The magnitude and timing of the recharge and discharge response of the groundwater system was shown to depend on the storage and permeability characteristics of the aquifer and whether the system is stream‐driven or recharge‐driven. These two dominant stream‐aquifer system types were defined based on classifying different aquifer types found in the southwest portion of the province. The classification scheme and diagnostic tools have the potential to provide a framework for evaluating the responses of wells in other mountainous regions. Using this framework, the potential consequences of future climate change may then be better understood based on the interactions between the hydrogeological and hydroclimatic settings of these aquifers. Copyright © 2010 Her Majesty the Queen in right of Canada. Published by John Wiley & Sons. Ltd  相似文献   
553.
Galaxy clusters, the largest clearly defined objects in our Universe, are ideal laboratories to study in detail the cosmic evolution of the intergalactic intracluster medium (ICM) and the cluster galaxy population. For the ICM, which is heated to X-ray radiating temperatures, X-ray spectroscopy is the most important tool to obtain insight into the structure and astrophysics of galaxy clusters. The ICM is also the hottest plasma that can be well studied under thermal equilibrium conditions. In this review we recall the basic principles of the interpretation of X-ray spectra from a hot, tenuous plasma and we illustrate the wide range of scientific applications of X-ray spectroscopy. The determination of galaxy cluster masses, the most important prerequisite for using clusters in cosmological studies, rest crucially on a precise spectroscopic determination of the ICM temperature distribution. The study of the thermal structure of the ICM provides a very interesting fossil record of the energy release during galaxy formation and evolution, giving important constraints on galaxy formation models. The temperature and pressure distribution of the ICM gives us important insight into the process of galaxy cluster merging and the dissipation of the merger energy in form of turbulent motion. Cooling cores in the centers of about half of the cluster population are interesting laboratories to investigate the interplay between gas cooling, star- and black hole formation and energy feedback, which is diagnosed by means of X-ray spectroscopy. The element abundances deduced from X-ray spectra of the ICM provide a cosmic history record of the contribution of different supernovae to the nucleosynthesis of heavy elements and their spatial distribution partly reflects important transport processes in the ICM. Some discussion of plasma diagnostics for conditions out of thermal equilibrium and an outlook on the future prospects of X-ray spectroscopic cluster studies complete our review.  相似文献   
554.
The relation between gravity anomalies, topography and volcanism can yield important insights about the internal dynamics of planets. From the power spectra of gravity and topography on Earth, Venus and Mars we infer that gravity anomalies have likely predominantly sources below the lithosphere up to about spherical harmonic degree l=30 for Earth, 40 for Venus and 5 for Mars. To interpret the low-degree part of the gravity spectrum in terms of possible sublithospheric density anomalies we derive radial mantle viscosity profiles consistent with mineral physics. For these viscosity profiles we then compute gravity and topography kernels, which indicate how much gravity anomaly and how much topography is caused by a density anomaly at a given depth. With these kernels, we firstly compute an expected gravity-topography ratio. Good agreement with the observed ratio indicates that for Venus, in contrast to Earth and Mars, long-wavelength topography is largely dynamically supported from the sublithospheric mantle. Secondly, we combine an empirical power spectrum of density anomalies inferred from seismic tomography in Earth’s mantle with gravity kernels to model the gravity power spectrum. We find a good match between modeled and observed gravity power spectrum for all three planets, except for 2?l?4 on Venus. Density anomalies in the Venusian mantle for these low degrees thus appear to be very small. We combine gravity kernels and the gravity field to derive radially averaged density anomaly models for the Martian and Venusian mantles. Gravity kernels for l?5 are very small on Venus below ≈800 km depth. Thus our inferences on Venusian mantle density are basically restricted to the upper 800 km. On Mars, gravity anomalies for 2?l?5 may originate from density anomalies anywhere within its mantle. For Mars as for Earth, inferred density anomalies are dominated by l=2 structure, but we cannot infer whether there are features in the lowermost mantle of Mars that correspond to Earth’s Large Low Shear Velocity Provinces (LLSVPs). We find that volcanism on Mars tends to occur primarily in regions above inferred low mantle density, but our model cannot distinguish whether or not there is a Martian analog for the finding that Earth’s Large Igneous Provinces mainly originate above the margins of LLSVPs.  相似文献   
555.
The emergence of the Metazoa can be dated back to the Neoproterozoic Era which comprises the Cryogenian Period during which two major glaciations occurred, the Sturtian and the Varanger-Marinoan. At that time, the phylum Porifera (sponges) evolved as the first animals and developed a hard skeleton. The two classes of siliceous sponges, the Hexactinellida and the Demospongiae, are already provided with the major genetic repertoire and gene regulatory networks that also exist in modern multicellular animals. Besides these metazoan innovations, the siliceous sponges display one autapomorphic character, silicatein, an enzyme which mediates bio-silica formation. Well preserved siliceous sponge fossils have been excavated from the Cambrian Burgess Shale- and Chengjiang deposits. It is concluded that it was the hard skeleton of the siliceous sponges that contributed to the successful evolution and survival of the Porifera during the last 500 Ma.  相似文献   
556.
A review of seawater intrusion and its management in Australia   总被引:5,自引:3,他引:2  
Extended periods of below-average rainfall combined with a rising population density in the Australian coastal margin have led to higher stresses on coastal water resources, and the risk of seawater intrusion has increased. Despite reports of seawater intrusion in the majority of states and evidence that some Australian coastal aquifers are seriously depleted, comprehensive seawater intrusion investigations have only been completed for coastal systems in Queensland and to a lesser degree in Western Australia and South Australia. The degree of assessment appears to be linked to the perceived economic value of the groundwater resource. The most detailed studies include those of the Pioneer Valley and Burnett basins in Queensland, for which conceptual and mathematical models have been developed at the regional scale, and have been used to underpin trigger-level management approaches to protect against further seawater intrusion. Historical responses to seawater intrusion include the establishment of artificial recharge schemes; the most prominent being that of the Lower Burdekin aquifers in Queensland. Recommendations for future solutions include enhanced fit-for-purpose seawater intrusion monitoring, continuing research into investigation methods, and improved knowledge-sharing through education programs and the development of national guidelines for seawater intrusion assessment and management.  相似文献   
557.
558.
We present new ultraviolet spectra of the hottest known, peculiar white dwarf H1504+65, obtained with the Cosmic Origins Spectrograph on the Hubble Space Telescope. H1504+65 is the hottest known white dwarf (T eff=200 000 K) and has an atmosphere mainly composed by carbon and oxygen, augmented with high amounts of neon and magnesium. This object is unique and the origin of its surface chemistry is completely unclear. We probably see the naked core of either a C–O white dwarf or even a O–Ne–Mg white dwarf. In the latter case, this would be the first proof that such white dwarfs can be the outcome of single-star evolution. The new observations were performed to shed light on the origin of this mysterious object.  相似文献   
559.
Continuous access to the UV domain has been considered of importance to astrophysicists and planetary scientists since the mid-sixties. However, the future of UV missions for the post-HST era is believed by a significant part of astronomical community to be less encouraging. We argue that key science problems of the coming years will require further development of UV observational technologies. Among these hot astrophysical issues are: the search for missing baryons, revealing the nature of astronomical engines, properties of atmospheres of exoplanets as well as of the planets of the Solar System etc. We give a brief review of UV-missions both in the past and in the future. We conclude that UV astronomy has a great future but the epoch of very large and efficient space UV facilities seems to be a prospect for the next decades. As to the current state of the UV instrumentation we think that this decade will be dominated by the HST and coming World Space Observatory-Ultraviolet (WSO-UV) with a 1.7 m UV-telescope onboard. The international WSO-UV mission is briefly described. It will allow high resolution/high sensitivity imaging and high/low resolution spectroscopy from the middle of the decade.  相似文献   
560.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号