首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   12篇
  国内免费   3篇
测绘学   9篇
大气科学   67篇
地球物理   122篇
地质学   285篇
海洋学   36篇
天文学   109篇
综合类   4篇
自然地理   23篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   16篇
  2015年   9篇
  2014年   16篇
  2013年   28篇
  2012年   11篇
  2011年   27篇
  2010年   23篇
  2009年   42篇
  2008年   18篇
  2007年   25篇
  2006年   18篇
  2005年   24篇
  2004年   19篇
  2003年   17篇
  2002年   14篇
  2001年   6篇
  2000年   13篇
  1999年   8篇
  1998年   5篇
  1997年   11篇
  1996年   6篇
  1995年   6篇
  1994年   10篇
  1993年   9篇
  1992年   6篇
  1990年   5篇
  1987年   7篇
  1986年   6篇
  1985年   8篇
  1984年   9篇
  1982年   16篇
  1981年   10篇
  1980年   13篇
  1979年   5篇
  1978年   7篇
  1977年   8篇
  1976年   9篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1972年   5篇
  1971年   9篇
  1970年   5篇
  1968年   6篇
  1967年   7篇
  1959年   7篇
  1954年   5篇
排序方式: 共有655条查询结果,搜索用时 31 毫秒
121.
The compound NaFeGe2O6 was grown synthetically as polycrystalline powder and as large single crystals suitable for X-ray and neutron-diffraction experiments to clarify the low temperature evolution of secondary structural parameters and to determine the low temperature magnetic spins structure. NaFeGe2O6 is isotypic to the clinopyroxene-type compound aegirine and adopts the typical HT-C2/c clinopyroxene structure down to 2.5?K. The Na-bearing M2 polyhedra were identified to show the largest volume expansion between 2.5?K and room temperature, while the GeO4 tetrahedra behave as stiff units. Magnetic susceptibility measurements show a broad maximum around 33?K, which marks the onset of low-dimensional magnetic ordering. Below 12?K NaFeGe2O6 transforms to an incommensurately modulated magnetic spin state, with k?=?[0.323, 1.0, 0.080] and a helical order of spins within the M1-chains of FeO6 octahedra. This is determined by neutron-diffraction experiments on a single crystal. Comparison of NaFeGe2O6 with NaFeSi2O6 is given and it is shown that the magnetic ordering in the latter compound, aegirine, also is complex and is best described by two different spin states, a commensurate one with C2??/c?? symmetry and an incommensurate one, best being described by a spin density wave, oriented within the (1 0 1) plane.  相似文献   
122.
An extensive characterisation of the magnetic properties of synthetic powders of kuramite, with formal composition Cu3SnS4, was performed. Powders were investigated through superconducting quantum interference device (SQUID) magnetometry, electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRPD), scanning and transmission electron microscopies (SEM and TEM) and microanalysis. SEM and TEM reveal the presence of nanodimensioned particles. XRPD clearly shows that Cu3SnS4 crystallised in a cubic sphalerite-type structural model, in spite of the stannite-type tetragonal structure described for the natural phase. This difference arises from a full random distribution of cations. Synthetic kuramite nanopowders exhibit a marked paramagnetism, originated by the presence of Cu(II), definitely assessed by EPR measurements. Moreover, the overall magnetic behaviour of the sample cannot be simply ascribed to diluted paramagnetism, and this suggests the presence of strong superexchange interactions among Cu(II) ions even at room temperature. The main consequences of these results are the definitive assessment of the chemical formula Cu(I)2Cu(II)SnS4 and of a random distribution of Cu(II), Cu(I) and Sn(IV) ions within the available tetrahedral sites.  相似文献   
123.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   
124.
Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.  相似文献   
125.
The evolution of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) family of models to study marine ecosystems is reviewed. Applications throughout the North Pacific have shown the models to be robust and to be able to reproduce 1D, 2D and 3D components of nutrient, carbon cycle and biogeochemical cycles as well as aspects of the lower trophic levels ecosystem (phyto- and zooplankton). NEMURO For Including Saury and Herring, an extension that includes higher trophic levels, can be run uncoupled or coupled to NEMURO. In the uncoupled mode, the growth and weight of an individual fish is computed using plankton densities simulated by NEMURO but with no feedback between fish consumption and plankton mortality. In the coupled mode, the feeding, growth and weight of a representative fish are computed, and prey removals due to feeding by fish appear as mortality terms on the prey. The NEMURO family of models continues to evolve, including effects of the microbial loop and iron limitation at lower trophic levels, and full life cycle, multi-species and multi-generational simulations at higher trophic levels. We outline perspectives for future end-to-end modeling efforts that can be used to study marine ecosystems in response to global environmental change.  相似文献   
126.
Gas phase transport according to chemical fluid transport (CFT) in Earth's crust as well as in the solar nebula is characterized by very high transport efficiency. Systematic investigations of mobilization, transport and deposition of gaseous MeX (Me = metal, X = F or Cl) compounds by solid gas equilibrium reactions are suitable to explain numerous extensive accumulations of minerals and ores. More than 40 of the considered chemical elements form volatile MeX compounds. Some elements tend to form MeF compounds, whereas others are more likely to form MeCl compounds. Silicon reacts with HF to form SiF4 and replaces other elements to form MeF compounds at low temperature ranges. Accumulations caused by SiF4 transport explain the formation of numerous quartz varieties and silicate minerals in Earth's crust. Iron most likely reacts with HCl to form FeCl2 as well as FeCl3 and explain the formation of iron or iron compounds. Thermodynamically directed transport from cool to hot areas in connection with cyclic processes increases the transport efficiency of MeX-species. Such species are SiF4, Al2F6, POF3, Cu3Cl3, SnCl4, BF3, GeF4, GeCl4, Ga2Cl6, ZrF4, NbF5 and TiF4. The transport gases SiF4 and POF3 often react with environmental compounds forming pneumatolytic and metasomatical mineral accumulations. CFT is the “motor” of pneumatolytic and metasomatical processes.  相似文献   
127.
Numerous ordered defect structures are known that are related to the sodium chloride (or MgO) structure type, thus they are basically cubic closest packed (ccp) arrangements with vacancies. For example the NbO type is an MgO type in which one quarter each of the anions and the cations are missing compared to the ccp in such a way that both anions and cations are in square-planar coordination. In spinel, Al2MgO4, one half of the octahedrally coordinated cations are missing compared with the MgO type and only one eighth of the tetrahedrally coordinated sites within the ccp are occupied. What these cases have in common is that all these derivatives are rather dense. This is different in pharmacosiderite, K[Fe4(OH)4As3O12]. 6 to 7H2O, where one half of the anion positions, three quarters of the octahedral sites and five eighth of the tetrahedral sites remain vacant, compared to the spinel type. Pharmacosiderite is a wide open porous structure with zeolitic properties. We are illustrating these relationships using a Bärnighausen symmetry tree and by tables relating the various structure types to each other.  相似文献   
128.
129.
We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640 ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water–rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40?Ar/4?He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300 °C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ± 140 t d− 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4 t d− 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42− in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140–370 MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1–3% for CO2, 2–8% for heat) of that estimated for the entire Yellowstone system.  相似文献   
130.
In this article, we describe the dynamics of pH, O2 and H2S in the top 5–10 cm of an intertidal flat consisting of permeable sand. These dynamics were measured at the low water line and higher up the flat and during several seasons. Together with pore water nutrient data, the dynamics confirm that two types of transport act as driving forces for the cycling of elements (Billerbeck et al. 2006b): Fast surface dynamics of pore water chemistry occur only during inundation. Thus, they must be driven by hydraulics (tidal and wave action) and are highly dependent on weather conditions. This was demonstrated clearly by quick variation in oxygen penetration depth: Seeps are active at low tide only, indicating that the pore water flow in them is driven by a pressure head developing at low tide. The seeps are fed by slow transport of pore water over long distances in the deeper sediment. In the seeps, high concentrations of degradation products such as nutrients and sulphide were found, showing them to be the outlets of deep-seated degradation processes. The degradation products appear toxic for bioturbating/bioirrigating organisms, as a consequence of which, these were absent in the wider seep areas. These two mechanisms driving advection determine oxygen dynamics in these flats, whereas bioirrigation plays a minor role. The deep circulation causes a characteristic distribution of strongly reduced pore water near the low water line and rather more oxidised sediments in the centre of the flats. The two combined transport phenomena determine the fluxes of solutes and gases from the sediment to the surface water and in this way create specific niches for various types of microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号