首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   12篇
  国内免费   3篇
测绘学   10篇
大气科学   68篇
地球物理   127篇
地质学   297篇
海洋学   37篇
天文学   110篇
综合类   4篇
自然地理   23篇
  2019年   9篇
  2018年   12篇
  2017年   8篇
  2016年   16篇
  2015年   10篇
  2014年   16篇
  2013年   28篇
  2012年   11篇
  2011年   29篇
  2010年   25篇
  2009年   42篇
  2008年   21篇
  2007年   27篇
  2006年   18篇
  2005年   26篇
  2004年   19篇
  2003年   17篇
  2002年   14篇
  2001年   6篇
  2000年   13篇
  1999年   8篇
  1997年   11篇
  1996年   6篇
  1995年   6篇
  1994年   10篇
  1993年   9篇
  1992年   6篇
  1990年   5篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   5篇
  1982年   16篇
  1981年   10篇
  1980年   13篇
  1979年   5篇
  1978年   7篇
  1977年   8篇
  1976年   9篇
  1975年   7篇
  1974年   9篇
  1973年   9篇
  1972年   5篇
  1971年   9篇
  1970年   5篇
  1968年   7篇
  1967年   7篇
  1959年   7篇
  1954年   5篇
排序方式: 共有676条查询结果,搜索用时 15 毫秒
31.
Sediments from the Red River and from an adjacent floodplain aquifer were investigated with respect to the speciation of Fe and As in the solid phase, to trace the diagenetic changes in the river sediment upon burial into young aquifers, and the related mechanisms of arsenic release to the groundwater. Goethite with subordinate amounts of hematite were, using Mössbauer spectroscopy, identified as the iron oxide minerals present in both types of sediment. The release kinetics of Fe, As, Mn and PO4 from the sediment were investigated in leaching experiments with HCl and 10 mM ascorbic acid, both at pH 3. From the river sediments, most of the Fe and As was mobilized by reductive dissolution with ascorbic acid while HCl released very little Fe and As. This suggests As to be associated with an Fe-oxide phase. For oxidized aquifer sediment most Fe was mobilized by ascorbic acid but here not much As was released. However, the reduced aquifer sediments contained a large pool of Fe(II) and As that is readily leached by HCl, probably derived from an unidentified authigenic Fe(II)-containing mineral which incorporates As as well. Extraction with ascorbic acid indicates that the river sediments contain both As(V) and As(III), while the reduced aquifer sediment almost exclusively releases As(III). The difference in the amount of Fe(II) leached from river and oxidized aquifer sediments by ascorbic acid and HCl, was attributed to reductive dissolution of Fe(III). The reactivity of this pool of Fe(III) was quantified by a rate law and compared to that of synthetic iron oxides. In the river mud, Fe(III) had a reactivity close to that of ferrihydrite, while the river sand and oxidized aquifer sediment exhibited a reactivity ranging from lepidocrocite or poorly crystalline goethite to hematite. Mineralogy by itself appears to be a poor predictor of the iron oxide reactivity in natural samples using the reactivity of synthetic Fe-oxides as a reference. Sediments were incubated, both unamended and with acetate added, and monitored for up to 2 months. The river mud showed the fastest release of both Fe and As, while the effect of acetate addition was minor. This suggests that the presence of reactive organic carbon is not rate limiting. In the case of the river and aquifer sediments, the release of Fe and As was always stimulated by acetate addition and here reactive organic carbon was clearly the rate limiting factor. The reduced aquifer sediment apparently can sustain slower but prolonged microbially-driven release of As. The highly reactive pools of Fe(III) and As in the river mud could be due to reoxidation of As and Fe contained in the reducing groundwater from the floodplain aquifers that are discharging into the river. Deposition of the suspended mud on the floodplain during high river stages is proposed to be a major flux of As onto the floodplain and into the underlying aquifers.  相似文献   
32.
In this article, we describe the dynamics of pH, O2 and H2S in the top 5–10 cm of an intertidal flat consisting of permeable sand. These dynamics were measured at the low water line and higher up the flat and during several seasons. Together with pore water nutrient data, the dynamics confirm that two types of transport act as driving forces for the cycling of elements (Billerbeck et al. 2006b): Fast surface dynamics of pore water chemistry occur only during inundation. Thus, they must be driven by hydraulics (tidal and wave action) and are highly dependent on weather conditions. This was demonstrated clearly by quick variation in oxygen penetration depth: Seeps are active at low tide only, indicating that the pore water flow in them is driven by a pressure head developing at low tide. The seeps are fed by slow transport of pore water over long distances in the deeper sediment. In the seeps, high concentrations of degradation products such as nutrients and sulphide were found, showing them to be the outlets of deep-seated degradation processes. The degradation products appear toxic for bioturbating/bioirrigating organisms, as a consequence of which, these were absent in the wider seep areas. These two mechanisms driving advection determine oxygen dynamics in these flats, whereas bioirrigation plays a minor role. The deep circulation causes a characteristic distribution of strongly reduced pore water near the low water line and rather more oxidised sediments in the centre of the flats. The two combined transport phenomena determine the fluxes of solutes and gases from the sediment to the surface water and in this way create specific niches for various types of microorganisms.  相似文献   
33.
In this study, we examine the maximum net extraction rate from the novel arrangement of an injection‐extraction well pair in a coastal aquifer, where fresh groundwater is reinjected through the injection well located between the interface toe and extraction well. Complex potential theory is employed to derive a new analytical solution for the maximum net extraction rate and corresponding stagnation‐point locations and recirculation ratio, assuming steady‐state, sharp‐interface conditions. The injection‐extraction well‐pair system outperforms a traditional single extraction well in terms of net extraction rate for a broad range of well placement and pumping rates, which is up to 50% higher for an aquifer with a thickness of 20 m, hydraulic conductivity of 10 m/d, and fresh water influx of 0.24 m2/d. Sensitivity analyses show that for a given fresh water discharge from an inland aquifer, a larger maximum net extraction is expected in cases with a smaller hydraulic conductivity or a smaller aquifer thickness, notwithstanding physical limits to drawdown at the pumping well that are not considered here. For an extraction well with a fixed location, the optimal net extraction rate linearly increases with the distance between the injection well and the sea, and the corresponding injection rate and recirculation ratio also increase. The analytical analysis in this study provides initial guidance for the design of well‐pair systems in coastal aquifers, and is therefore an extension beyond previous applications of analytical solutions of coastal pumping that apply only to extraction or injection wells.  相似文献   
34.
35.
Detailed facies analysis of hyaloclastites and associated lavas from eight table mountains and similar "hyaloclastite volcanoes" in the Icelandic rift zone contradict a rapid and continuous, "monogenetic", entirely subglacial evolution of most volcanoes studied. The majority of the exposed hyaloclastite deposits formed in large, stable lakes as indicated by widespread, up to 300-m-thick, continuous sections of deep water, shallow water and emergent facies. Salient features include extensively layered or bedded successions comprising mainly debris flow deposits, turbidites, base surge and fallout deposits consisting of texturally and compositionally variable, slightly altered hyaloclastites, as well as sheet and pillow lavas. In contrast, chaotic assemblages of coarser-grained, more poorly sorted and more strongly palagonitized hyaloclastite tuffs and breccias, as well as scoria and lava are interpreted to have formed under sub- or englacial conditions in small, chimney-like ice cavities or ice-bound lakes. Irregularly shaped and erratically arranged hyaloclastite bodies produced at variable water levels appear to have resulted mainly from rapid changes of the eruptive environment due to repeated build-up and drainage of ice-bound lakes as well as the restricted space between the ice walls. We distinguish a "deep water" facies formed during high water levels of the lake, a hydroclastic shallow water and emergent facies (leakage of the lake or growth of the volcano above the water surface). Our model implies the temporary existence of large, stable lakes in Iceland probably formed by climatically induced ice melting. The highly complex edifices of many table mountains and similar volcanoes were constructed during several eruptive periods in changing environments characterized by contrasting volcanic and sedimentary processes. Received: 10 June 1997 / Accepted: 28 July 1998  相似文献   
36.
On the basis of recently reported data on the kinetics of carbon-13 exchange between CO2 and CH4 at temperatures above 500°C, first order rate constants log k = 11.16?10,190/T were derived allowing variations in Δ, the difference in the isotopic composition of coexisting CO2 and CH4, to be evaluated as a function of initial composition and cooling rate of the rising geothermal fluid. Observed Δ-values in geothermal discharges are likely to represent frozen in compositions attained after minimum residence times of 20 ka at 400°C or 10 Ma at 300°C. The carbon-13 contents of any biogenic gases are unlikely to have been affected by thermal re-equilibration at temperatures below 200°C. The chemical equilibrium involving CO2 and CH4 can be expected to proceed about a hundred times faster than isotopic equilibration.  相似文献   
37.
Every basin of higher than first order is drained by a channel network composed of two subnetworks. Their basins are separated by a drainage divide line, called the basin divider, which is the primary organizing feature of the main basin. Each basin of magnitude n contains n – 1 subnetworks of higher order, and is therefore organized by a set of n – 1 dividers. The dividers and the basin boundary are interconnected in a graph called the divider network of the basin; in graph-theoretic terms this network forms a tree and has the same magnitude and link numbers as the channel network draining the basin. While the subbasins and subnetworks of a drainage basin form a nesting hierarchy, the corresponding dividers do not; indeed, any two dividers share at most one node in common, and whether they do so is independent of whether the corresponding subbasins are nesting or disjoint. However, the dividers of nesting basins are linked by recursive relationships which permit the derivation of a set of algebraic equations; these equations relate the dividers of a basin to other basin components; for example, their combined length is equal to half the length of all first-order basin boundaries minus the length of the main basin boundary. The second part of the paper explores the dependence of the divider length on other basin parameters. The expected length, as predicted by the assumption of topological randomness, is clearly rejected by the data. An alternative approach (regression) is based on the observed magnitudes of the subbasins separated by each divider, and is reasonably successful in estimating divider length. The last section introduces the concept of the standardized basin defined by a boundary length of unity; the estimated lengths of the basin divider and the basin boundary permit an approximate reconstruction of the idealized basin shape and the location of the divider in it.  相似文献   
38.
Ohne Zusammenfassung  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号