The Dongfang1-1 gas field (DF1-1) in the Yinggehai Basin is currently the largest offshore self-developed gas field in China and is rich in oil and gas resources. The second member of the Pliocene Yinggehai Formation (YGHF) is the main gas-producing formation and is composed of various sedimentary types; however, a clear understanding of the sedimentary types and development patterns is lacking. Here, typical lithofacies, logging facies and seismic facies types and characteristics of the YGHF are identified based on high-precision 3D seismic data combined with drilling, logging, analysis and testing data. Based on 3D seismic interpretation and attribute analysis, the origin of high-amplitude reflections is clarified, and the main types and evolution characteristics of sedimentary facies are identified. Taking gas formation upper II (IIU) as an example, the plane distribution of the delta front and bottom current channel is determined; finally, a comprehensive sedimentary model of the YGHF second member is established. This second member is a shallowly buried “bright spot” gas reservoir with weak compaction. The velocity of sandstone is slightly lower than that of mudstone, and the reflection has medium amplitude when there is no gas. The velocity of sandstone decreases considerably after gas accumulation, resulting in an increase in the wave impedance difference and high-amplitude (bright spot) reflection between sandstone and mudstone; the range of high amplitudes is consistent with that of gas-bearing traps. The distribution of gas reservoirs is obviously controlled by dome-shaped diapir structural traps, and diapir faults are channels through which natural gas from underlying Miocene source rocks can enter traps. The study area is a delta front deposit developed on a shallow sea shelf. The lithologies of the reservoir are mainly composed of very fine sand and coarse silt, and a variety of sedimentary structural types reflect a shallow sea delta environment; upward thickening funnel type, strong toothed bell type and toothed funnel type logging facies are developed. In total, 4 stages of delta front sand bodies (corresponding to progradational reflection seismic facies) derived from the Red River and Blue River in Vietnam have developed in the second member of the YGHF; these sand bodies are dated to 1.5 Ma and correspond to four gas formations. During sedimentation, many bottom current channels (corresponding to channel fill seismic facies) formed, which interacted with the superposed progradational reflections. When the provenance supply was strong in the northwest, the area was dominated by a large set of delta front deposits. In the period of relative sea level rise, surface bottom currents parallel to the coastline were dominant, and undercutting erosion was obvious, forming multistage superimposed erosion troughs. Three large bottom current channels that developed in the late sedimentary period of gas formation IIU are the most typical. 相似文献
The upper part of the Huanghe (Yellow River) drainage basin supplies 50–60% of the annual water discharge and only 10% of the total river sediment load, while the middle reaches contribute 30–40% of the water flow and 90% of the annual sediment load, because of severe erosion over the Loess Plateau. Large variations in both annual water discharge and sediment load occur in the Huanghe. Heavy sedimentation in the lower reaches of the channel makes the river bed aggrade several centimetres per year. Of the suspended sediment in the river, 90–95% is deposited in the lower part of the river course and in the coastal shallow water area; less than 5–10% escapes from Laizhou Bay and enters the Central Bohai and/or North Huanghai (Yellow Sea). The active delta complex now propagates seawards at a mean rate of 42 km2 year−1. 相似文献
Analysis of ocean fronts' uncertainties indicates that they result from indiseemibility of their spatial position and fuzzi-ness of their intensity. In view of this, a flow hierarchy for uncertainty representation of ocean fronts is proposed on the basis of fuzzy-rough set theory. Firstly, raster scanning and blurring are carried out on an ocean front, and the upper and lower approximate sets, the indiscernible relation in fuzzy-rough theories and related operators in fuzzy set theories are adopted to represent its uncer-tainties, then they are classified into three sets: with members one hundred pereent belonging to the ocean front, belonging to the ocean front's edge and definitely not belonging to the ocean front. Finally, the approximate precision and roughness degree are util-ized to evaluate the ocean front's degree of uncertainties and the precision of the representation. It has been proven that the method is not only capable of representing ocean fronts' uncertainties, but also provides a new theory and method for uncertainty representation of other oceanic phenomena. 相似文献