排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
D. L. WHITNEY 《Journal of Metamorphic Geology》1992,10(6):715-725
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km. 相似文献
12.
A CEE (2.5 m by 16 m) has been used to study the budget of organic production by measuring the changes in POC/N, oxygen and 14CO, uptake through three-week period. 14C primary production measurements were conducted with 4-hours and 24-hours incubation periods, and with size fractionation. Different types and sizes of bottle effects were examined. Results showed that the oxygen method production was highest, followed by the 14CO2 uptake method, and POC gain showed the lowest. The value of PQ should be more than 1.7. The ratio of 4-hour incubation to 24-hour incubation was 2.42±0.22, indicating that net daily production is equal to 9.7±0.9 h of illuminated growth. Different types and sizes of bottles had little effect on primary production. 相似文献
13.
Metamorphism and deformation at different structural levels in a strike-slip fault zone, Ross Lake fault, North Cascades, USA 总被引:1,自引:0,他引:1
S. M. GORDON D. L. WHITNEY R. B. MILLER N. McLEAN N. C. A. SEATON 《Journal of Metamorphic Geology》2010,28(2):117-136
Continental crust is displaced in strike-slip fault zones through lateral and vertical movement that together drive burial and exhumation. Pressure – temperature–deformation ( P–T–d ) histories of orogenic crust exhumed in transcurrent zones record the mechanisms and conditions of these processes. The Skagit Gneiss Complex, a migmatitic unit of the North Cascades, Washington (USA), was metamorphosed at depths of ∼25–30 km in a continental arc under contraction, and is bounded on its eastern side by the long-lived transcurrent Ross Lake fault zone (RLFZ). The P–T–d conditions recorded by rocks on either side of the RLFZ vary along the length of the fault zone, but most typically the fault separates high-grade gneiss and plutons from lower-grade rocks. The Ruby Mt–Elijah Ridge area at the eastern margin of the Skagit Gneiss exposes tectonic contacts between gneiss and overlying rocks; the latter rocks, including slivers of Methow basin deposits, are metamorphosed and record higher-grade metamorphism than in correlative rocks along strike along the RLFZ. In this area, the Skagit Gneiss and overlying units all yield maximum P–T conditions of 8–10 kbar at >650 °C, indicating that slices of basin rocks were buried to similar mid-crustal depths as the gneiss. After exhumation of fault zone rocks to <15 km depth, intrusion of granitoid plutons drove contact metamorphism, resulting in texturally late andalusite–cordierite in garnet schist. In the Elijah Ridge area of the RLFZ, an overlapping step-over or series of step-overs that evolved through time may have facilitated burial and exhumation of a deep slice of the Methow basin, indicating that strike-slip faults can have major vertical displacement (tens of kilometres) that is significant during the crustal thickening and exhumation stages of orogeny. 相似文献
14.
D. L. WHITNEY 《Journal of Metamorphic Geology》1992,10(1):71-85
The Skagit Gneiss, a major component of the crystalline core of the North Cascades, was metamorphosed during a mid-Cretaceous(?) to early Tertiary high-P event driven by the collision of the Insular and Intermontane superterranes. Maximum pressures recorded by metapelitic rocks are 8–10 kbar at 650–725° C. High pressures are also indicated by coexisting staurolite and hornblende in amphibolites in the Skagit Gneiss and adjacent Cascade River Schist. Mineral reactions continued during nearly isothermal decompression from 8–10 kbar to c. 3–5 kbar. Early high-P minerals (e.g. kyanite) are present as armoured relics in garnet in gneisses that contain sillimanite and cordierite in the groundmass. Skeletal relics of kyanite are also present in the groundmass of lower-grade, staurolite-bearing schists that contain texturally later cordierite. This matrix kyanite may have been preserved as a result of rapid uplift following initial decompression at high temperature. These results represent a revision of the metamorphic history of the Skagit Gneiss, which was formerly thought to have experienced only relatively low-P Barrovian metamorphism. Qualitative estimates of metamorphic conditions based on stable matrix mineral assemblages result in an underestimation of maximum pressures because mineral reactions continued during decompression. Geobarometric results for the Skagit Gneiss are interpreted as evidence for major crustal thickening in the North Cascades. Recognition that pressures of c. 9 kbar were attained supports a contractional model for North Cascades orogenesis and requires that tectonic syntheses account for the burial of the Skagit Gneiss protoliths to a depth of c. 25–30 km. 相似文献