Rapid economic developments in East Asian countries have inevitably resulted in environmental degradation in the surrounding seas, and concern for both the environment and protection from pollutants is increasing. Identification of sources of contaminants is essential to environmental pollution management. In this study, the provenance of anthropogenic lead (Pb), a major pollutant of Yellow Sea sediments, was determined for river mouth sediments, including those of the Changjiang, Huanghe, Han, and Geum Rivers, and for age-determined shelf core sediments through the measurement of Pb isotope ratios in the HCl-leached fraction using multi-collector inductively coupled plasma-mass spectrometry (MC ICP/MS). Anthropogenic Pb has accumulated in shelf core sediments since 1910, and its isotope ratios were estimated as 0.863–0.866 and 2.119–2.125 for 207Pb/206Pb and 208Pb/206Pb, respectively, from the mixing relationships of the two endmembers. River mouth sediments exhibited enough distinction in anthropogenic Pb isotope ratios to be discriminated: 0.874 (2.144) in the Huanghe, 0.856 (2.129) in the Han, 0.857 (2.122) in the Geum, and 0.854 (2.101) in the Changjiang for 207Pb/206Pb (208Pb/206Pb), respectively. Although isotope ratios of geogenic Pb in sediments dating before 1910 showed narrow ranges (0.842–0.845 and 2.088–2.100 for 207Pb/206Pb and 208Pb/206Pb, respectively), distinct isotope ratios in each core permitted source identification of sediments in the Yellow Sea based on geographic locations and the geogenic Pb of each river. By comparing the isotope ratios of the estimated anthropogenic Pb to source-related materials, the provenances of anthropogenic Pb in Chinese river sediments were presumed to be Chinese coal or ore, which is also a major source of atmospheric particulate Pb. The anthropogenic Pb in the shelf core sediments in the northern Yellow Sea originated from northern Chinese cities such as Beijing and Tianjin through atmospheric pathways. Pb isotope ratios indicated that Pb in Korean river sediments was characteristic of local Korean ores. 相似文献
There are 4 species of Littorinidae on the intertidal hard bed in the Jiulong River Estu-ary. They are Littorina scabra, L. brevicula, Nodilittorina pyramidalis pyramidalis and N.millegrana. Of these species, L. scabra is a dominant species. According to the results of in-vestigation, we find distribution patterns of the Littorinidae on intertidal hard bed in theestuary as follows: (1)There is no Littorinid species at Haicheng Station. (2)There is only Lit- 相似文献
The solitary ascidian, Ciona savignyi (Ascidiacea, Enterogona) is a notorious marine invader still expanding its habitat range worldwide. This species is considered native to the North West Pacific, but its indigeneity in Korean coastal waters has been questioned because of outdated taxonomic records and its inhabitation of oceanographically marginal areas. To clarify their cryptic invasion state, 247 individual C. savignyi samples were collected from 12 harbors and marinas on the Korean coast, and a 744 bp region of mitochondrial DNA (mtDNA) cytochrome c oxidase subunit I gene was sequenced and analyzed. Our analyses of population genetic structure and demographic history provided considerable pieces of evidence supporting their long-term establishment on the Korean coasts: differentiated population genetic structure, sequentially arrayed star-shape haplotype network, neutrality test results of past population expansions, and post-glacial colonization pattern of demography. Consequently, we concluded that C. savignyi populations on the Korean Coast are indigenous rather than exotic. These results could be used as reference data for further phylogeo graphic and demographic studies of problematic Ciona species, and to clarify and resolve similar cryptic invasion states of the other Korean coastal marine organisms. This study is the first to resolve the cryptic in vasion state of Korean marine organisms using genetic analysis.