Two semi-asymmetric flow patterns of typhoons are chosen to qualitatively determine the effect of exchange of horizontal momentum between inflow and outflow layers and the environment on the motion of typhoons. The results show that only the asymmetric flow component (residual after azimuthal mean flow has been removed) could cause a net momentum input into or output from a typhoon and therefore contribute to the changes in speed and direction of the typhoon movement. A typhoon with major inflow and/or outflow channels on its right (left) side would tend to accelerate and turn left (decelerate and turn right); On the other hand, a typhoon with major inflow and/or outflow channels in the rear (front) semicircle would tend to accelerate and turn right (decelerate and turn left). 相似文献
A new dark energy model in anisotropic Bianchi type-III space-time with variable equation of state (EoS) parameter has been
investigated in the present paper. To get the deterministic model, we consider that the expansion θ in the model is proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sji\sigma^{j}_{~i}. The EoS parameter ω is found to be time dependent and its existing range for this model is in good agreement with the recent observations of
SNe Ia data (Knop et al. in Astrophys. J. 598:102, 2003) and SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004). It has been suggested that the dark energy that explains the observed accelerating expansion of the universe may arise
due to the contribution to the vacuum energy of the EoS in a time dependent background. Some physical aspects of dark energy
model are also discussed. 相似文献