首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28356篇
  免费   469篇
  国内免费   350篇
测绘学   693篇
大气科学   2322篇
地球物理   6123篇
地质学   9819篇
海洋学   2651篇
天文学   5649篇
综合类   84篇
自然地理   1834篇
  2020年   181篇
  2019年   192篇
  2018年   431篇
  2017年   395篇
  2016年   551篇
  2015年   389篇
  2014年   588篇
  2013年   1401篇
  2012年   641篇
  2011年   983篇
  2010年   816篇
  2009年   1081篇
  2008年   995篇
  2007年   969篇
  2006年   962篇
  2005年   834篇
  2004年   837篇
  2003年   791篇
  2002年   803篇
  2001年   649篇
  2000年   669篇
  1999年   621篇
  1998年   586篇
  1997年   599篇
  1996年   482篇
  1995年   486篇
  1994年   455篇
  1993年   422篇
  1992年   395篇
  1991年   342篇
  1990年   391篇
  1989年   312篇
  1988年   350篇
  1987年   398篇
  1986年   338篇
  1985年   495篇
  1984年   545篇
  1983年   559篇
  1982年   443篇
  1981年   434篇
  1980年   457篇
  1979年   391篇
  1978年   401篇
  1977年   358篇
  1976年   380篇
  1975年   355篇
  1974年   388篇
  1973年   372篇
  1972年   235篇
  1971年   188篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
881.
The influence of the coastal ocean on global net annual air-sea CO2 fluxes remains uncertain. However, it is well known that air-sea pCO2 disequilibria can be large (ocean pCO2 ranging from ∼400 μatm above atmospheric saturation to ∼250 μatm below) in eastern boundary currents, and it has been hypothesized that these regions may be an appreciable net carbon sink. In addition it has been shown that the high productivity in these regions (responsible for the exceptionally low surface pCO2) can cause nutrients and inorganic carbon to become more concentrated in the lower layer of the water column over the shelf relative to adjacent open ocean waters of the same density. This paper explores the potential role of the winter season in determining the net annual CO2 flux in temperate zone eastern boundary currents, using the results from a box model. The model is parameterized and forced to represent the northernmost part of the upwelling region on the North American Pacific coast. Model results are compared to the few summer data that exist in that region. The model is also used to determine the effect that upwelling and downwelling strength have on the net annual CO2 flux. Results show that downwelling may play an important role in limiting the amount of CO2 outgassing that occurs during winter. Finally data from three distinct regions on the Pacific coast are compared to highlight the importance of upwelling and downwelling strength in determining carbon fluxes in eastern boundary currents and to suggest that other features, such as shelf width, are likely to be important.  相似文献   
882.
This paper examines the evidence for the model of a small cumulus cloud represented as a quasi static but turbulent entity, growing on the upshear side and decaying on the downshear side. While the air just outside the cloudy outline is, on average, stationary relative to the embedding airmass, there is a slight flow, upwards and forward as though the updraft has induced upward motion in the clear air outside the cloud, on the growing side. On the decaying side the motion is downwards and away from the cloud.This is a flow pattern which is not consistent with the air flowing around the cloud as it moves forward but it agrees well with the picture given. Decayed remnants of cloud are found throughout the air previously occupied by the cloud. The cloud outline moves through the embedding air at a velocity which is almost as large as the relative motion of the subcloud feeding airflow (which is almost free from internal wind shear in strong convection).The mixing of dry air from above the inversion yields the observed diluted liquid water content in small cumuli, if such mixing is allowed to proceed until the cloud density equals that of the surrounding air. Quantitative conditions relating the liquid water to inversion temperature and moisture changes, and to the stability of the environment are presented. The strong vertical mixing from the top of the cloud downwards is important to microphysical processes.  相似文献   
883.
The mineralization of the active hydrothermal JADE field resembles in many aspects the Kuroko-type mineralization. The JADE field is located in a back-arc graben and is associated with a bimodal volcanism. Lead isotope data from igneous rocks, sediments, and ores further emphasize the similarities with the Kuroko ores and suggest that both sediments and volcanic rocks contributed comparable amounts of lead to the deposit. When compared to the sediments, a much larger volume of volcanic rocks must have contributed lead to the deposit, because of the considerably lower lead concentration of volcanic rocks. In contrast to the crustal type lead of the JADE field and the Kuroko-type sulfide deposits the lead isotope signatures of VMS-type deposits at mid-ocean ridges is distinctly different. In the absence of a sedimentary cover it reflects the composition of the mantle source, whereas in the presence of a sedimentary cover it is either a mixture of mantle and sedimentary lead or it may even be completely dominated by the latter. Received: 5 October 1995 / Accepted: 10 May 1996  相似文献   
884.
885.
A solution for the two-dimensional scattering and diffraction of plane SH waves by canyons of arbitrary shape in an elastic half space is presented. The wave field for arbitrary geometry in this paper is computed numerically by the method of weighted residues (moment method). The wave displacement field computed by the present residual method for the case of a semi-circular canyon was shown to agree analytically and numerically with that computed by the exact closed form series solution. The same observations about ground amplifications, their dependence on frequencies and orientations of the incident waves, can be stated here for canyons of arbitrary shape as previously made for circular canyons.  相似文献   
886.
The composition of the Earth   总被引:317,自引:0,他引:317  
W. F. McDonough  S. -s. Sun   《Chemical Geology》1995,120(3-4):223-253
Compositional models of the Earth are critically dependent on three main sources of information: the seismic profile of the Earth and its interpretation, comparisons between primitive meteorites and the solar nebula composition, and chemical and petrological models of peridotite-basalt melting relationships. Whereas a family of compositional models for the Earth are permissible based on these methods, the model that is most consistent with the seismological and geodynamic structure of the Earth comprises an upper and lower mantle of similar composition, an Fe---Ni core having between 5% and 15% of a low-atomic-weight element, and a mantle which, when compared to CI carbonaceous chondrites, is depleted in Mg and Si relative to the refractory lithophile elements.The absolute and relative abundances of the refractory elements in carbonaceous, ordinary, and enstatite chondritic meteorites are compared. The bulk composition of an average CI carbonaceous chondrite is defined from previous compilations and from the refractory element compositions of different groups of chondrites. The absolute uncertainties in their refractory element compositions are evaluated by comparing ratios of these elements. These data are then used to evaluate existing models of the composition of the Silicate Earth.The systematic behavior of major and trace elements during differentiation of the mantle is used to constrain the Silicate Earth composition. Seemingly fertile peridotites have experienced a previous melting event that must be accounted for when developing these models. The approach taken here avoids unnecessary assumptions inherent in several existing models, and results in an internally consistent Silicate Earth composition having chondritic proportions of the refractory lithophile elements at 2.75 times that in CI carbonaceous chondrites. Element ratios in peridotites, komatiites, basalts and various crustal rocks are used to assess the abundances of both non-lithophile and non-refractory elements in the Silicate Earth. These data provide insights into the accretion processes of the Earth, the chemical evolution of the Earth's mantle, the effect of core formation, and indicate negligible exchange between the core and mantle throughout the geologic record (the last 3.5 Ga).The composition of the Earth's core is poorly constrained beyond its major constituents (i.e. an Fe---Ni alloy). Density contrasts between the inner and outer core boundary are used to suggest the presence ( 10 ± 5%) of a light element or a combination of elements (e.g., O, S, Si) in the outer core. The core is the dominant repository of siderophile elements in the Earth. The limits of our understanding of the core's composition (including the light-element component) depend on models of core formation and the class of chondritic meteorites we have chosen when constructing models of the bulk Earth's composition.The Earth has a bulk Fe/Al of 20 ± 2, established by assuming that the Earth's budget of Al is stored entirely within the Silicate Earth and Fe is partitioned between the Silicate Earth ( 14%) and the core ( 86%). Chondritic meteorites display a range of Fe/Al ratios, with many having a value close to 20. A comparison of the bulk composition of the Earth and chondritic meteorites reveals both similarities and differences, with the Earth being more strongly depleted in the more volatile elements. There is no group of meteorites that has a bulk composition matching that of the Earth's.  相似文献   
887.
To determine the effects of the Chesapeake Bay outflow plume on the coastal ocean, nutrient concentrations and climatology were evaluated in conjunction with nitrogen (N) and carbon (C) uptake rates during a 3-year field study. Sixteen cruises included all seasons and captured high- and low-flow freshwater input scenarios. Event-scale disturbances in freshwater flow and wind speed and direction strongly influenced the location and type of plume present and thus the biological uptake of N and C. As expected, volumetric primary productivity rates did not always correlate with chlorophyll a concentrations, suggesting that high freshwater flow does not translate into high productivity in the coastal zone; rather, high productivity was observed during periods where recycling processes may have dominated. Results suggest that timing of meteorological events, with respect to upwelling or downwelling favorable conditions, plays a crucial role in determining the impact of the estuarine plume on the coastal ocean.  相似文献   
888.
A numerical model of the Leonid stream is developed, based on an earlier model which has been applied to the Perseid stream. The results for this model are applied to the 2001 Leonid return. By examining the full three-dimensional dispersion of individual 'streamlets' released from the Leonid parent comet, 55P/Tempel–Tuttle, we have derived an estimate for the temporal change in spatial density of each trail. Using this result along with an estimate for the location of the centres for individual streamlets and fits to previous Leonid storm profiles, we estimate that the activity from the shower will be broad and relatively strong (zenithal hourly rates perhaps in excess of 1000). In particular, streamlets from the 1766 and 1799 ejections contribute to activity peaking near 10 and 12 ut on 2001 November 18, respectively. Additional older material from 1633, 1666 and 1699, as well as more recent ejections from 1866 and 1833, contributes to a much broader secondary maximum near 17.5 ut on November 18. Comparison with other published models of predicted Leonid activity in 2001 shows general agreement in terms of timing, but the models differ significantly in terms of the relative magnitude of the activity (which other models suggest will be larger). Significant anisotropy in the impact hazard exists for satellites in the geostationary belt, with those over western longitudes most likely to be affected. Integrated fluences for the 2001 Leonid return suggest a hazard of order one magnitude greater than occurred for the 1999 Leonid storm.  相似文献   
889.
Proglacial suspended sediment transport was monitored at Haut Glacier d'Arolla, Switzerland, during the 1998 melt season to investigate the mechanisms of basal sediment evacuation by subglacial meltwater. Sub‐seasonal changes in relationships between suspended sediment transport and discharge demonstrate that the structure and hydraulics of the subglacial drainage system critically influenced how basal sediment was accessed and entrained. Under hydraulically inefficient subglacial drainage at the start of the melt season, sediment availability was generally high but sediment transport increased relatively slowly with discharge. Later in the melt season, sediment transport increased more rapidly with discharge as subglacial meltwater became confined to a spatially limited network of channels following removal of the seasonal snowpack from the ablation area. Flow capacity is inferred to have increased more rapidly with discharge within subglacial channels because rapid changes in discharge during highly peaked diurnal runoff cycles are likely to have been accommodated largely by changes in flow velocity. Basal sediment availability declined during channelization but increased throughout the remainder of the monitored period, resulting in very efficient basal sediment evacuation over the peak of the melt season. Increased basal sediment availability during the summer appears to have been linked to high diurnal water pressure variation within subglacial channels inferred from the strong increase in flow velocity with discharge. Basal sediment availability therefore appears likely to have been increased by (1) enhanced local ice‐bed separation leading to extra‐channel flow excursions and[sol ]or (2) the deformation of basal sediment towards low‐pressure channels due to a strong diurnally reversing hydraulic gradient between channels and areas of hydraulically less‐efficient drainage. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
890.
The time it takes water to travel through a catchment, from when it enters as rain and snow to when it leaves as streamflow, may influence stream water quality and catchment sensitivity to environmental change. Most studies that estimate travel times do so for only a few, often rain-dominated, catchments in a region and use relatively short data records (<10 years). A better understanding of how catchment travel times vary across a landscape may help diagnose inter-catchment differences in water quality and response to environmental change. We used comprehensive and long-term observations from the Turkey Lakes Watershed Study in central Ontario to estimate water travel times for 12 snowmelt-dominated headwater catchments, three of which were impacted by forest harvesting. Chloride, a commonly used water tracer, was measured in streams, rain, snowfall and as dry atmospheric deposition over a 31 year period. These data were used with a lumped convolution integral approach to estimate mean water travel times. We explored relationships between travel times and catchment characteristics such as catchment area, slope angle, flowpath length, runoff ratio and wetland coverage, as well as the impact of harvesting. Travel time estimates were then used to compare differences in stream water quality between catchments. Our results show that mean travel times can be variable for small geographic areas and are related to catchment characteristics, in particular flowpath length and wetland cover. In addition, forest harvesting appeared to decrease mean travel times. Estimated mean travel times had complex relationships with water quality patterns. Results suggest that biogeochemical processes, particularly those present in wetlands, may have a greater influence on water quality than catchment travel times.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号