首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65031篇
  免费   996篇
  国内免费   578篇
测绘学   1644篇
大气科学   4874篇
地球物理   13345篇
地质学   22954篇
海洋学   5606篇
天文学   14040篇
综合类   123篇
自然地理   4019篇
  2021年   547篇
  2020年   553篇
  2019年   593篇
  2018年   1294篇
  2017年   1180篇
  2016年   1596篇
  2015年   958篇
  2014年   1488篇
  2013年   3235篇
  2012年   1613篇
  2011年   2354篇
  2010年   2114篇
  2009年   2819篇
  2008年   2409篇
  2007年   2420篇
  2006年   2303篇
  2005年   1947篇
  2004年   1902篇
  2003年   1837篇
  2002年   1827篇
  2001年   1551篇
  2000年   1499篇
  1999年   1300篇
  1998年   1280篇
  1997年   1314篇
  1996年   1067篇
  1995年   1079篇
  1994年   1017篇
  1993年   917篇
  1992年   860篇
  1991年   797篇
  1990年   852篇
  1989年   770篇
  1988年   774篇
  1987年   892篇
  1986年   763篇
  1985年   1033篇
  1984年   1119篇
  1983年   1060篇
  1982年   924篇
  1981年   956篇
  1980年   868篇
  1979年   815篇
  1978年   816篇
  1977年   750篇
  1976年   723篇
  1975年   694篇
  1974年   731篇
  1973年   732篇
  1972年   431篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
151.
The specific features of the generation and intensification of internal gravity wave structures in different atmospheric-ionospheric regions, caused by zonal local nonuniform winds (shear flows), are studied. The model of the medium has been explained and an initial closed system of equations has been obtained in order to study the linear and nonlinear dynamics of internal gravity waves (IGWs) when they interact with the geomagnetic field in a dissipative ionosphere (for the D, E, and F regions).  相似文献   
152.
The modified time-to-failure method for intermediate-term earthquake prediction utilizes empirical relationships to reduce the number of unknown parameters providing a stable and unique solution set. The only unknown parameters in the modified time-to-failure method are the time and size of the impending main shock. The modified time-to-failure equation is used to model the precursory events and a prediction contour diagram is constructed with the magnitude and time-of-failure as the axes of the diagram. The root-mean-square (rms) is calculated for each set of time and magnitude on the prediction diagram representing the difference between the model (calculated) acceleration and the actual accelerated energy release of the precursory events. A small region, corresponding to the low rms region on the diagram, defines the prediction. The prediction has been shown to consistently under-estimate the magnitude and over-estimate the time-of-failure. These shortcomings are caused by an underestimation in energy release of the modified time-to-failure equation at the very end of the sequence. An empirical correction can be applied to the predicted results to minimize this problem. A main shock location search technique has been developed for use with the modified time-to-failure method. The location technique is used to systematically search an earthquake catalog and identify locations corresponding to precursory sequences that display accelerated energy releases. It has shown good results when applied in retrospective predictions, and is essential for the practical application of the modified time-to-failure method. In addition, an observed linear characteristic in long-term energy release can be used to minimize false predictions. The refined empirical relationships that eliminate or constrain unknown constants used in the modified time-to-failure method and the main shock location search technique are used in a practical application in the New Madrid Seismic Zone (NMSZ). The NMSZ, which is over due for a magnitude 6 event according to recurrence rates (Johnston and Nava, 1985), makes this region ideal for testing the method. One location was identified in the NMSZ as a high risk area for an event in the magnitude 4.5 range. The prediction, if accurate, is of scientific interest only because of the relatively small size of the main shock.  相似文献   
153.
154.
A new protocol was devised to improve the efficiency of astrometric follow-up observations of Near Earth Asteroids for the accurate determination of their orbits. It was implemented in the activities of the Spaceguard Central Node (SCN, a facility of the Spaceguard Foundation, established with the support of the European Space Agency) in the form of a Priority List. Here we describe this protocol and results obtained during five years of activity (2000–2004).  相似文献   
155.
156.
The Cryogenian succession of the Northern Flinders Ranges reveals a complex sedimentary record between the Sturtian and Marinoan glacial deposits. A major unconformity separates the Sturtian and Marinoan-aged sedimentary successions in the area. This forms a subaerial erosion surface with terrestrial and marginal marine infill directly above the Angepena and Balcanoona Formations in their respective localities. This exposure surface is here correlated with the previously documented submarine unconformity between the Yankaninna Formation and the underlying deep marine Tapley Hill Formation. This erosional event provides a chronostratigraphic marker horizon that coincides approximately with thepreviously defined Sturtian–Marinoan Time Series boundary in the Northern Flinders Ranges. These stratigraphic relationships also constrain lateral facies relationships between the Oodnaminta ReefComplex (Balcanoona Formation) and the Angepena Formation. Similarly, the shallow-water Weetootla Dolomite is correlated with the deeper water carbonates of the Yankaninna Formation.  相似文献   
157.
Faunal lists for 17 sections in the Overton Formation are presented. Faunal diversity appears to increase towards the formations base while faunal dominance appears to increase towards its top.  相似文献   
158.
Investigations on OH maser lines in comets have been performed with the RT-22 at CrAO. The results of observations of 9P/Temper1 and Lulin C/2007 N3 comets in the OH molecule line at a wavelength of 18 cm are presented. An original technique for observation data analysis has been developed. The gas production rate of OH molecules in these comets is estimated.  相似文献   
159.
132 soft X-ray flare events have been observed with The Aerospace Corporation/Marshall Space Flight Center S-056 X-ray telescope that was part of the ATM complement of instruments aboard Skylab. Analyses of these data are reported in this paper. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-rays emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. Loop structures are found to constitute a fundamental characteristic of flare cores and arcades of loops are found to play a more important role in the flare phenomena than previously thought. Size distributions of these core features are presented and a classification scheme describing the brightest flare X-ray features is proposed. The data show no correlations between the size of core features and: (1) the peak X-ray intensity, as indicated by detectors on the SOLRAD satellite; (2) the rise time of the X-ray flare event, or (3) the presence of a nonthermal X-ray component. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be the result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or re-orientation of these features. Brief comparisons with several theories are presented.  相似文献   
160.
Photospheric and chromospheric spectroscopic Doppler rotation rates for the full solar disk are analyzed for the period July, 1966 to July, 1978. An approximately linear secular increase of the equatorial rate of 3.7% for these 12 years is found (in confirmation of Howard, 1976). The high latitude rates above 65 ° appear to vary with a peak-to-peak amplitude of 8%, or more, phased to the sunspot cycle such that the most rapid rotation occurs at, or following, solar maximum. The chromosphere, as indicated by H, has continued to rotate on the average 3% faster than the photosphere agreeing with past observations. Sources of error are discussed and evaluated.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号