首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25426篇
  免费   472篇
  国内免费   259篇
测绘学   632篇
大气科学   1952篇
地球物理   5432篇
地质学   8948篇
海洋学   2036篇
天文学   5450篇
综合类   38篇
自然地理   1669篇
  2020年   141篇
  2019年   130篇
  2018年   293篇
  2017年   267篇
  2016年   414篇
  2015年   301篇
  2014年   428篇
  2013年   1184篇
  2012年   507篇
  2011年   789篇
  2010年   646篇
  2009年   913篇
  2008年   839篇
  2007年   799篇
  2006年   829篇
  2005年   717篇
  2004年   754篇
  2003年   714篇
  2002年   717篇
  2001年   590篇
  2000年   602篇
  1999年   575篇
  1998年   548篇
  1997年   562篇
  1996年   462篇
  1995年   464篇
  1994年   443篇
  1993年   412篇
  1992年   382篇
  1991年   328篇
  1990年   382篇
  1989年   299篇
  1988年   342篇
  1987年   382篇
  1986年   330篇
  1985年   483篇
  1984年   526篇
  1983年   535篇
  1982年   423篇
  1981年   426篇
  1980年   441篇
  1979年   389篇
  1978年   404篇
  1977年   349篇
  1976年   383篇
  1975年   345篇
  1974年   383篇
  1973年   371篇
  1972年   234篇
  1971年   187篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
691.
Authigenic albites in carbonate rocks typically grow in a high-grade diagenetic to low-grade metamorphic environment and often show Roc-Tourné-twinning sensu Füchtbauer. Based on an investigation of four Middle to South European occurrences, they show Mn2+- and Fe3+-activated cathodoluminescence (CL), as revealed by combined high resolution spectroscopy of cathodoluminescence emission (HRS-CL), electron paramagnetic resonance (EPR), and proton-induced X-ray emission (μPIXE).  相似文献   
692.
. Naphthalenesulfonates and their condensation products with formaldehyde are manufactured in the chemical industry for broad application as tanning agents, dispersing agents, and as superplasticizers for concrete. With the disposal of waste they have found their way into the aquatic environment. Five monomeric naphthalenesulfonates and a group of dimeric sulfonated naphthalene-formaldehyde condensates (SNFC) were identified in the leachate and in groundwater observation wells downstream in the plume of the Karlsruhe-West landfill, situated in the Upper Rhine Valley in southwest Germany. For the main monomer of technical SNFC products, 2-naphthalenesulfonate (2-NS), the concentration in the leachate was 170 µg l–1, which decreased to 9.5 µg l–1 at a distance of about 300 m from the boundary of the landfill. In the Merdingen tracer test field, the transport of these compounds was studied under more controlled conditions in two tracer experiments with (1) two model compounds, and (2) a technical SNFC product and uranine as a reference tracer. In these experiments, the monomeric naphthalenesulfonates and the SNFC with n=2 behave as conservative tracers. Thus, the findings of the landfill study were supported by these results. Higher molecular SNFC were strongly retarded, which is attributed to adsorption to soil particles. The results of the second tracer experiment suggest a degradation of 2-NS and 2,6-naphthalenedisulfonate (2,6-NDS) after adaptation of the microorganisms in the groundwater aquifer as a consequence of the first tracer experiment.  相似文献   
693.
Seagrass meadows are often cited as important nursery areas for newly settled red drum even though many estuaries, such as Galveston Bay, Texas, support large numbers of red drum and have limited seagrass cover, suggesting the use of alternate nursery areas. We examined patterns of habitat use for newly settled red drum at six sampling areas in Galveston Bay; two areas had seagrass beds and four areas had no seagrass. We measured densities in different habitat types using epibenthic sleds and enclosure samplers. Peak recruitment of young red drum to the estuary occurred during September through December. Highest densities of new settlers were found in seagrass meadows (primarilyHalodule wrightii), but when seagrass was absent, the highest densities of red drum occurred along theSpartina alterniflora marsh edge interface. Densities were relatively low on nonvegetated bottom away from the marsh edge. We also examined density patterns in other habitat types at selected sampling areas and found no red drum within marsh vegetation away from the marsh edge interface (5 and 10 m into the marsh interior). Oyster reefCrassostrea virginica was sampled using lift nets, and we found no red drum using this habitat, although adjacent seagrass and marsh interface habitats were used. Even though red drum densities in marsh edge were low relative to seagrass, the large areal extent of marshes in the bay complex probably makes marsh edge the most important nursery habitat for red drum in Galveston Bay.  相似文献   
694.
Experiments exposing Type B calcium-, aluminum-rich inclusion (CAI)-like melts at high temperatures to high vacuum or reducing hydrogen-rich gas mixtures were used to determine the rates and consequences of elemental and isotopic fractionation by evaporation. Silicon and magnesium were found to evaporate much faster than calcium and aluminum, and the resulting residual liquid trajectories in composition space are reproduced via a thermodynamic model for the saturation vapor pressure of the evaporating species. Isotopic fractionations associated with evaporation were measured for magnesium. The resulting relationship between fraction of magnesium lost and enrichment of the residue in the heavy isotopes of magnesium follows a Rayleigh fractionation curve with a fractionation factor that is close to, but not exactly, the theoretically expected value. The rate of evaporation is found to be a strong function of temperature, oxygen fugacity, and melt composition, which can be understood and modeled in terms of the dependence of the saturation vapor pressures on these variables. The relationship between evaporation rate, which we measure, and calculated saturation vapor involves empirical evaporation coefficients that we find to be significantly less than one (∼0.1). Analytical and numerical models are used to characterize how diffusion in both the melt and in the surrounding gas affects evaporation rates and the degree of chemical and isotopic fractionation. The experimental data and theoretical considerations are combined to give a parameterization of the rates and consequences of evaporation of Type B CAI-like liquids, which is then used to translate the measured isotopic fractionation of Type B CAIs into constraints on their thermal history. Cooling rates of the order of 10°C per hour are indicated.  相似文献   
695.
The kinetics of Mn(II) oxidation by the bacterium Leptothrix discophora SS1 was investigated in this research. Cells were grown in a minimal mineral salts medium in which chemical speciation was well defined. Mn(II) oxidation was observed in a bioreactor under controlled conditions with pH, O2, and temperature regulation. Mn(II) oxidation experiments were performed at cell concentrations between 24 mg/L and 35 mg/L, over a pH range from 6 to 8.5, between temperatures of 10°C and 40°C, over a dissolved oxygen range of 0 to 8.05 mg/L, and with L. discophora SS1 cells that were grown in the presence of Cu concentrations ranging from zero to 0.1 μM. Mn(II) oxidation rates were determined when the cultures grew to stationary phase and were found to be directly proportional to O2 and cell concentrations over the ranges investigated. The optimum pH for Mn(II) oxidation was approximately 7.5, and the optimum temperature was 30°C. A Cu level as low as 0.02 μM was found to inhibit the growth rate and yield of L. discophora SS1 observed in shake flasks, while Cu levels between 0.02 and 0.1 μM stimulated the Mn(II) oxidation rate observed in bioreactors. An overall rate law for Mn(II) oxidation by L. discophora as a function of pH, temperature, dissolved oxygen concentration (D.O.), and Cu concentration is proposed. At circumneutral pH, the rate of biologically mediated Mn(II) oxidation is likely to exceed homogeneous abiotic Mn(II) oxidation at relatively low (≈μg/L) concentrations of Mn oxidizing bacteria.  相似文献   
696.
The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 μm-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances. They became fossilised while in the process of degrading the organic matter of the organism and the coprolite. Comparison with a modern marine biofilm revealed morphologic details identical to those observed in the fossil bacterial biofilms. Although the fossil biofilms on both macrofossils exhibited identical microtextures, their mode of preservation was inhomogeneous and varied between calcium phosphate and an as yet unidentified mineral phase consisting mainly of Si, Ca, Ti, P, and S, but also showing the presence of Mg, Al, and Fe. The coprolite consists purely of fossilised bacterial cells in a densely packed arrangement and associated fossilised extracellular polymeric substances.In addition to preliminary imaging and energy-dispersive X-ray analysis, both the fossil biofilms and the sediment were investigated by nondestructive in situ analysis using time of flight-secondary ion mass spectroscopy (ToF-SIMS). The mass spectra obtained on the coprolite in mass-resolved chemical mapping mode allowed the tentative identification of a number of organic secondary ion species. Some spectra appear to indicate the presence of bacterial hopanoids, but further work using standard techniques such as gas chromatography mass spectroscopy is needed to conclusively verify the presence of these substances. Nevertheless, ToF-SIMS chemical maps were successfully correlated with electron microscopy images, allowing the correlation of molecular spectra, the spatial distribution of individual organic species, and specific morphologic features to demonstrate the potential of this approach in the analysis of microfossils.  相似文献   
697.
698.
A suite of 47 carbonaceous, enstatite, and ordinary chondrites are examined for Re-Os isotopic systematics. There are significant differences in the 187Re/188Os and 187Os/188Os ratios of carbonaceous chondrites compared with ordinary and enstatite chondrites. The average 187Re/188Os for carbonaceous chondrites is 0.392 ± 0.015 (excluding the CK chondrite, Karoonda), compared with 0.422 ± 0.025 and 0.421 ± 0.013 for ordinary and enstatite chondrites (1σ standard deviations). These ratios, recast into elemental Re/Os ratios, are as follows: 0.0814 ± 0.0031, 0.0876 ± 0.0052 and 0.0874 ± 0.0027, respectively. Correspondingly, the 187Os/188Os ratios of carbonaceous chondrites average 0.1262 ± 0.0006 (excluding Karoonda), and ordinary and enstatite chondrites average 0.1283 ± 0.0017 and 0.1281 ± 0.0004, respectively (1σ standard deviations). The new results indicate that the Re/Os ratios of meteorites within each group are, in general, quite uniform. The minimal overlap between the isotopic compositions of ordinary and enstatite chondrites vs. carbonaceous chondrites indicates long-term differences in Re/Os for these materials, most likely reflecting chemical fractionation early in solar system history.A majority of the chondrites do not plot within analytical uncertainties of a 4.56-Ga reference isochron. Most of the deviations from the isochron are consistent with minor, relatively recent redistribution of Re and/or Os on a scale of millimeters to centimeters. Some instances of the redistribution may be attributed to terrestrial weathering; others are most likely the result of aqueous alteration or shock events on the parent body within the past 2 Ga.The 187Os/188Os ratio of Earth’s primitive upper mantle has been estimated to be 0.1296 ± 8. If this composition was set via addition of a late veneer of planetesimals after core formation, the composition suggests the veneer was dominated by materials that had Re/Os ratios most similar to ordinary and enstatite chondrites.  相似文献   
699.
700.
Climate change impacts on U.S. Coastal and Marine Ecosystems   总被引:1,自引:0,他引:1  
Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction, invasive species, land and resource use, extreme natural events), which may lead to more significant consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号