首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   6篇
  国内免费   4篇
测绘学   14篇
大气科学   25篇
地球物理   77篇
地质学   157篇
海洋学   12篇
天文学   91篇
自然地理   18篇
  2023年   2篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   21篇
  2013年   14篇
  2012年   11篇
  2011年   17篇
  2010年   17篇
  2009年   30篇
  2008年   20篇
  2007年   22篇
  2006年   21篇
  2005年   17篇
  2004年   11篇
  2003年   28篇
  2002年   17篇
  2001年   7篇
  2000年   8篇
  1999年   9篇
  1998年   7篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1986年   4篇
  1984年   3篇
  1981年   3篇
  1980年   4篇
  1975年   2篇
  1971年   3篇
  1970年   2篇
  1967年   3篇
  1958年   2篇
  1956年   2篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
  1950年   2篇
  1949年   1篇
  1948年   1篇
  1942年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有394条查询结果,搜索用时 15 毫秒
131.

Underground mining and deep drilling of the richly diamondiferous ~1.2 Ga Argyle lamproite in Western Australia has prompted a re-evaluation of the geology of the pipe. Argyle is considered to be a composite pipe that formed by the coalescence of several diatremes and has been offset and elongated by post-emplacement faulting. Recent geological studies have recognised at least five distinct volcaniclastic lamproite lithofacies with differing diamond grades. The new data suggest that the centre of the southern (main) diatreme is occupied by well-bedded, olivine lamproite lapilli tuff with very high diamond grades (>10 ct/t). Characteristic features include a clast-supported fabric and high modal abundance of densely packed lamproite lapilli and coarse-grained, likely mantle-derived olivine now replaced by serpentine and/or talc. The persistence of small-scale graded and cross-bedding in this lithofacies to depths of ~1.5 km below the original surface prior to erosion suggests phreatomagmatic volcanism forming the diatreme was syn-eruptively accompanied by subsidence of the tephra, maintaining a steep-walled diatreme in the water-saturated country rock sediments.

  相似文献   
132.
 Pipe G3b is part of the Upper Cretaceous carbonatitic Gross Brukkaros Volcanic Field in southern Namibia. The pipe represents the root zone of a diatreme and is located 2800 m west of the rim of Gross Brukkaros, a downsag caldera. The pipe is exposed approximately 550 m below the original Upper Cretaceous land surface. It cuts down into its own feeder dyke, 0.3 m thick. The pipe coalesced from two small pipes and in plan view is 19 m long and 12 m wide. It consists of fragmented Cambrian Nama quartzites and shales of the Fish River subgroup. Despite intensive brecciation, the stratigraphic sequence of the country rocks is almost preserved in the pipe. In addition, the feeder dyke became fragmented too and can be traced in a 2- to 3-m-wide zone full of carbonatite blocks along the southern margin of the pipe. The void space of the breccia is 30–50% in volume. Finally, after the disruption of country rocks and feeder dyke, a little carbonatite magma intruded some of the void space. The breccia of pipe G3b is considered to represent a root zone at the transition from the feeder dyke into a diatreme above. Formation of the breccia required a shock wave thought to have been associated with a last explosion of the diatreme immediately above the present level of exposure. The explosion can be shown to have been phreatomagmatic in origin. Received: 11 October 1996 / Accepted: 6 March 1997  相似文献   
133.
 In the Upper Cretaceous Gross Brukkaros Volcanic Field, southern Namibia, a radial dyke system surrounds a dome structure and its 74 closely related carbonatite diatremes. This paper focuses on volcanological features which seem to be typical for a low-viscosity melt in various settings such as dykes, sills and diatremes. The total or near absence of vesicles in carbonatite ash grains and lapilli inside the diatremes is evidence against explosive exsolution of volatile phases and in favour of a phreatomagmatic fragmentation mechanism and thus for a phreatomagmatic eruption mechanism of the carbonatite diatremes. Received: 15 August 1996 / Accepted: 13 January 1997  相似文献   
134.
135.
136.
Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from ?1.45 to ?2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between ?1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between ?15.42 and ?19.04‰. Barite which is associated with galena has significantly different δ34S values (?0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.  相似文献   
137.
Synthetic CaAlSiO4F, the Al-F analog of titanite, has been investigated using single-crystal synchrotron diffraction experiments at Beamline X06DA (Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland) and Raman spectroscopy. The presented structural model with 40 parameters was refined against 506 unique reflections to a final R o b s of 0.026 (space group A2/a, a = 6.9120(11), b = 8.5010(10), c = 6.435(2) Å, β = 114.670(11)°, and Z = 4) and exhibits less distorted coordination polyhedra than earlier models from powder data. Vibrational spectra were calculated in harmonic approximation at the Γ point from fully relaxed energy optimisations of the crystal structure, using 3D-periodic density functional theory with Gaussian basis sets and the software CRYSTAL06. The lattice parameters of the fully relaxed structure were in good agreement with the experimental values, with the calculated values 0.8 ± 0.4 % too large; the monoclinic angle was calculated 0.4° too large. The agreement of the calculated Raman frequencies with the observed ones was very good, with standard deviation ±3 cm?1 and maximum deviations of ±7 cm?1. Furthermore, a detailed discussion of the atomic displacements associated with each Raman mode is given.  相似文献   
138.
139.
This paper provides the first measurements of the nitrogen (N) concentrations and isotopic compositions of high- and ultrahigh-pressure mafic eclogites, aimed at characterizing the subduction input flux of N in deeply subducting altered oceanic crust (AOC). The samples that were studied are from the Raspas Complex (Ecuador), Lago di Cignana (Italy), the Zambezi Belt (Zambia) and Cabo Ortegal (Spain), together representing subduction to 50-90 km depths. The eclogites contain 2-20 ppm N with δ15Nair values ranging from −1 to +8‰. These values overlap those of altered oceanic crust, but are distinct from values for fresh MORB (for the latter, ∼1.1 ppm N and δ15Nair ∼ −4‰). Based on N data in combination with other trace element data, the eclogite suites can be subdivided into those that are indistinguishable from their likely protolith, AOC, with or without superimposed effects of devolatilization (Lago di Cignana, Cabo Ortegal), and those that have experienced metasomatic additions during subduction-zone metamorphism (Zambezi Belt, Raspas). For the former group, the lack of a detectable loss of N in the eclogites, compared to various altered MORB compositions, suggests the retention of N in deeply subducted oceanic crust. The metasomatic effects affecting the latter group can be best explained by mixing with a (meta)sedimentary component, resulting in correlated enrichments of N and other trace elements (in particular, Ba and Pb) thought to be mobilized during HP/UHP metamorphism. Serpentinized and high-pressure metamorphosed peridotites, associated with the eclogites at Raspas and Cabo Ortegal, contain 3-15 ppm N with δ15Nair values ranging from +3 to +6‰, significantly higher than the generally accepted values for the MORB mantle (δ15Nair ∼ −5‰). Based on their relatively high N contents and their homogeneous and positive δ15N values, admixing of sedimentary N is also indicated for the serpentinized peridotites.One possible pathway for the addition of sediment-derived N into eclogites and peridotites involves mixing with fluids along the slab-mantle wedge interface. Alternatively, sedimentary N could be incorporated into peridotites during serpentinization at bending-related faults at the outer rise and, during later deserpentinization, released into fluids that then infiltrate overlying rocks. Deep retention of N in subducting oceanic crust should be considered in any attempt to balance subduction inputs with outputs in the form of arc volcanic gases. If materials such as these eclogites and serpentinized peridotites are eventually subducted to beyond sub-arc depths into the deeper mantle, containing some fraction of their forearc-subarc N inventory (documented here), they could deliver isotopically heavy N into the mantle to potentially be sampled by plume-related magmas.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号