首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3752篇
  免费   1031篇
  国内免费   17篇
测绘学   75篇
大气科学   87篇
地球物理   2116篇
地质学   1451篇
海洋学   212篇
天文学   581篇
综合类   3篇
自然地理   275篇
  2022年   5篇
  2021年   38篇
  2020年   67篇
  2019年   203篇
  2018年   217篇
  2017年   306篇
  2016年   356篇
  2015年   366篇
  2014年   390篇
  2013年   448篇
  2012年   319篇
  2011年   292篇
  2010年   277篇
  2009年   196篇
  2008年   244篇
  2007年   180篇
  2006年   128篇
  2005年   122篇
  2004年   105篇
  2003年   120篇
  2002年   98篇
  2001年   90篇
  2000年   101篇
  1999年   22篇
  1998年   9篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   10篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   4篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有4800条查询结果,搜索用时 15 毫秒
141.
The varved sediment of Lake Suigetsu (central Japan) provides a valuable opportunity to obtain high‐resolution, multi‐proxy palaeoenvironmental data across the last glacial/interglacial cycle. In order to maximize the potential of this archive, a well‐constrained chronology is required. This paper outlines the multiple geochronological techniques being applied – namely varve counting, radiocarbon dating, tephrochronology (including argon–argon dating) and optically stimulated luminescence (OSL) – and the approaches by which these techniques are being integrated to form a single, coherent, robust chronology. Importantly, we also describe here the linkage of the floating Lake Suigetsu (SG06) varve chronology and the absolute (IntCal09 tree‐ring) time scale, as derived using radiocarbon data from the uppermost (non‐varved) portion of the core. This tie‐point, defined as a distinct (flood) marker horizon in SG06 (event layer B‐07–08 at 1397.4 cm composite depth), is thus derived to be 11 255 to 11 222 IntCal09 cal. years BP (68.2% probability range).  相似文献   
142.
Measurements of temporal variations in soil detachability under different land uses are badly needed to develop new algorithms or evaluate the existing ones for temporal adjustment of soil detachability in continuous soil erosion models. Few studies have been conducted in the Loess Plateau to quantify temporal variations in detachment rate of runoff under different land uses. The objectives of this study were to investigate the temporal variations of soil detachment rate under different land uses and to further identify the potential factors causing the change in detachment rate in the Loess Plateau. Undisturbed soil samples were collected in the fields of arable land (millet, soybean, corn, and potato), grassland, shrub land, wasteland, and woodland and tested in a laboratory flume under a constant hydraulic condition. The measurements started in mid‐April and ended in early October, 2006. The results showed that soil detachment rate of each land use fluctuated considerably over time. Distinctive temporal variation in detachment rate was found throughout the summer growing season of measurement in each land use. The maximum detachment rates of different land uses varied from 0·019 to 0·490 kg m–2 s–1 and the minimum detachment rates ranged from 0·004 to 0·092 kg m–2 s–1. Statistical analysis using a paired‐samples t‐test indicated that variations in soil detachment rate differed significantly at the 0·05 level between land uses in most cases. The major factors responsible for the temporal variation of soil detachment were tillage operations (such as planting, ploughing, weeding, harvesting), soil consolidation, and root growth. The influence of tillage operations on soil detachment depended on the degree of soil disturbance caused by the operations. The consolidation of the topsoil over time after tillage was reflected by increases in soil bulk density and soil cohesion. As soil bulk density and cohesion increased, detachment rate decreased. The impact of root density was inconclusive in this study. Further studies are needed to quantify the effects of root density on temporal variations of soil detachment. This work provides useful information for developing temporal adjustments to soil detachment rate in continuous soil erosion models in the Loess Plateau. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
143.
Indirect nitrous oxide (N2O) emissions produced by nitrogen (N) leaching into surface water and groundwater bodies are poorly understood in comparison to direct N2O emissions from soils. In this study, dissolved N2O concentrations were measured weekly in both lowland headwater streams and subsurface agricultural field drain discharges over a 2‐year period (2013–2015) in an intensive arable catchment, Norfolk, UK. All field drain and stream water samples were found to have dissolved N2O concentrations higher than the water–air equilibrium concentration, illustrating that all sites were acting as a net source of N2O emissions to the atmosphere. Soil texture was found to significantly influence field drain N2O dynamics, with mean concentrations from drains in clay loam soils (5.3 μg N L?1) being greater than drains in sandy loam soils (4.0 μg N L?1). Soil texture also impacted upon the relationships between field drain N2O concentrations and other water quality parameters (pH, flow rate, and nitrate (NO3) and nitrite (NO2) concentrations), highlighting possible differences in N2O production mechanisms in different soil types. Catchment antecedent moisture conditions influenced the storm event mobilisation of N2O in both field drains and streams, with the greatest concentration increases recorded during precipitation events preceded by prolonged wet conditions. N2O concentrations also varied seasonally, with the lowest mean concentrations typically occurring during the summer months (JJA). Nitrogen fertiliser application rates and different soil inversion regimes were found to have no effect on dissolved N2O concentrations, whereas higher N2O concentrations recorded in field drains under a winter cover crop compared to fallow fields revealed cover crops are an ineffective greenhouse gas emission mitigation strategy. Overall, this study highlights the complex interactions governing the dynamics of dissolved N2O concentrations in field drains and headwater streams in a lowland intensive agricultural catchment.  相似文献   
144.
Data collected recently by the helioseismic experiments aboard the SOHO spacecraft have allowed the detection of low degree p‐modes with increasingly lower order n. In particular, the GOLF experiment is currently able to unambiguously identify low degree modes with frequencies as low as 1.3 mHz. The detection of p‐modes with very low frequency (i.e., low n), is difficult due to the low signal‐to‐noise ratio in this spectral region and its contamination by solar signals that are not of acoustic origin. To address this problem without using any theoretical a priory, we propose a methodology that relies only on the inversion of observed values to define a spectral window for the expected locations of these low frequency modes. The application of this method to 2920‐day‐long GOLF observations is presented and its results discussed. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
145.
Single crystal (U‐Th)/He dating has been undertaken on 21 detrital zircon grains extracted from a core sample from Ocean Drilling Project (ODP) site 1073, which is located ~390 km northeast of the center of the Chesapeake Bay impact structure. Optical and electron imaging in combination with energy dispersive X‐ray microanalysis (EDS) of zircon grains from this late Eocene sediment shows clear evidence of shock metamorphism in some zircon grains, which suggests that these shocked zircon crystals are distal ejecta from the formation of the ~40 km diameter Chesapeake Bay impact structure. (U‐Th/He) dates for zircon crystals from this sediment range from 33.49 ± 0.94 to 305.1 ± 8.6 Ma (2σ), implying crystal‐to‐crystal variability in the degree of impact‐related resetting of (U‐Th)/He systematics and a range of different possible sources. The two youngest zircon grains yield an inverse‐variance weighted mean (U‐Th)/He age of 33.99 ± 0.71 Ma (2σ uncertainties n = 2; mean square weighted deviation = 2.6; probability [P] = 11%), which is interpreted to be the (U‐Th)/He age of formation of the Chesapeake Bay impact structure. This age is in agreement with K/Ar, 40Ar/39Ar, and fission track dates for tektites from the North American strewn field, which have been interpreted as associated with the Chesapeake Bay impact event.  相似文献   
146.
147.
The perspective of European National Mapping Agencies (NMA) on the role of citizen sensing in map production was explored. The NMAs varied greatly in their engagement with the community generating volunteered geographic information (VGI) and in their future plans. From an assessment of NMA standard practices, it was evident that much VGI was acquired with a positional accuracy that, while less than that typically acquired by NMAs, actually exceeded the requirements of the nominal data capture scale used by most NMAs. Opportunities for VGI use in map revision and updating were evident, especially for agencies that use a continuous rather than cyclical updating policy. Some NMAs had also developed systems to engage with citizen sensors and examples are discussed. Only rarely was VGI used to collect data on features beyond the standard set used by the NMAs. The potential role of citizen sensing and so its current scale of use by NMAs is limited by a series of concerns, notably relating to issues of data quality, the nature and motivation of the contributors, legal issues, the sustainability of data source, and employment fears of NMA staff. Possible priorities for future research and development are identified to help ensure that the potential of VGI in mapping is realized.  相似文献   
148.
Abstract— Patches of clastic matrix (15 to 730 μm in size) constitute 4.9 vol% of EH3 Yamato (Y‐) 691 and 11.7 vol% of EH3 Allan Hills (ALH) 81189. Individual patches in Y‐691 consist of 1) ?25 vol% relatively coarse opaque grain fragments and polycrystalline assemblages of kamacite, schreibersite, perryite, troilite (some grains with daubréelite exsolution lamellae), niningerite, oldhamite, and caswellsilverite; 2) ?30 vol% relatively coarse silicate grains including enstatite, albitic plagioclase, silica and diopside; and 3) an inferred fine nebular component (?45 vol%) comprised of submicrometer‐size grains. Clastic matrix patches in ALH 81189 contain relatively coarse grains of opaques (?20 vol%; kamacite, schreibersite, perryite and troilite) and silicates (?30 vol%; enstatite, silica and forsterite) as well as an inferred fine nebular component (?50 vol%). The O‐isotopic composition of clastic matrix in Y‐691 is indistinguishable from that of olivine and pyroxene grains in adjacent chondrules; both sets of objects lie on the terrestrial mass‐fractionation line on the standard three‐isotope graph. Some patches of fine‐grained matrix in Y‐691 have distinguishable bulk concentrations of Na and K, inferred to be inherited from the solar nebula. Some patches in ALH 81189 differ in their bulk concentrations of Ca, Cr, Mn, and Ni. The average compositions of matrix material in Y‐691 and ALH 81189 are similar but not identical‐matrix in ALH 81189 is much richer in Mn (0.23 ± 0.05 versus 0.07 ± 0.02 wt%) and appreciably richer in Ni (0.36 ± 0.10 versus 0.18 ± 0.05 wt%) than matrix in Y‐691. Each of the two whole‐rocks exhibits a petrofabric, probably produced by shock processes on their parent asteroid.  相似文献   
149.
Exceptional rainfall events cause significant losses of soil, although few studies have addressed the validation of model predictions at field scale during severe erosive episodes. In this study, we evaluate the predictive ability of the enhanced Soil Erosion and Redistribution Tool (SERT‐2014) model for mapping and quantifying soil erosion during the exceptional rainfall event (~235 mm) that affected the Central Spanish Pyrenees in October 2012. The capacity of the simulation model is evaluated in a fallow cereal field (1.9 ha) at a high spatial scale (1 × 1 m). Validation was performed with field‐quantified rates of soil loss in the rills and ephemeral gullies and also with a detailed map of soil redistribution. The SERT‐2014 model was run for the six rainfall sub‐events that made up the exceptional event, simulating the different hydrological responses of soils with maximum runoff depths ranging between 40 and 1017 mm. Predicted average and maximum soil erosion was 11 and 117 Mg ha?1 event?1, respectively. Total soil loss and sediment yield to the La Reina gully amounted to 16.3 and 9.0 Mg event?1. These rates are in agreement with field estimations of soil loss of 20.0 Mg event?1. Most soil loss (86%) occurred during the first sub‐event. Although soil accumulation was overestimated in the first sub‐event because of the large amount of detached soil, the enhanced SERT‐2014 model successfully predicted the different spatial patterns and values of soil redistribution for each sub‐event. Further research should focus on stream transport capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
150.
The behavior of granular materials is known to depend on its loose or dense nature, which in turns depends both on density and confining pressure. Many models developed in the past require the use of different sets of constitutive parameters for the same material under different confining pressures. The purpose of this paper is to extend a basic generalized plasticity model for sands proposed by Pastor, Zienkiewicz and Chan by modifying the main ingredients of the model flow—rule, loading–unloading discriminating direction and plastic modulus—to include a dependency on the state parameter. The proposed model is tested against the available experimental data on three different sands, using for each of them a single set of material parameters, finding a reasonably good agreement between experiments and predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号