首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   22篇
  国内免费   4篇
测绘学   1篇
大气科学   8篇
地球物理   89篇
地质学   105篇
海洋学   15篇
天文学   36篇
综合类   2篇
自然地理   4篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   11篇
  2019年   10篇
  2018年   8篇
  2017年   20篇
  2016年   14篇
  2015年   14篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   19篇
  2010年   17篇
  2009年   17篇
  2008年   11篇
  2007年   12篇
  2006年   3篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   10篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
151.
The derivation of an alert model for landslide risk management is a paramount problem for those sites which are affected by complex landslides involving strategic infrastructures as well as towns. This is a quite common scenario all over the world and then it is a primary problem for the management of geomorphological risk. Along the Adriatic Coast of south Italy, Petacciato landslide is peculiar, since it showed 11 reactivations between 1924 and 2009. It is a deep-seated landslide, and the history of its reactivations shows that even if generally related to quite abundant rainfall periods, there is no clear correlation between rainfall events and reactivations. For this reason, here, an analysis based on a data-driven evolutionary modeling technique is attempted, in order to identify an alert model based on cumulative rainfall heights. Modeling results are quite interesting and encouraging, since they are able to provide landslide forecasting whereas no false positive are ever returned. This work shows the results of this attempt as well as an analysis of the input to the modeling approach, in order to identify which are those cumulative rainfall heights which are physically sound with respect to the particular landslide.  相似文献   
152.
153.
Abstract

The problem of identifying and reproducing the hydrological behaviour of groundwater systems can often be set in terms of ordinary differential equations relating the inputs and outputs of their physical components under simplifying assumptions. Conceptual linear and nonlinear models described as ordinary differential equations are widely used in hydrology and can be found in several studies. Groundwater systems can be described conceptually as an interlinked reservoir model structured as a series of nonlinear tanks, so that the groundwater table can be schematized as the water level in one of the interconnected tanks. In this work, we propose a methodology for inferring the dynamics of a groundwater system response to rainfall, based on recorded time series data. The use of evolutionary techniques to infer differential equations from data in order to obtain their intrinsic phenomenological dynamics has been investigated recently by a few authors and is referred to as evolutionary modelling. A strategy named Evolutionary Polynomial Regression (EPR) has been applied to a real hydrogeological system, the shallow unconfined aquifer of Brindisi, southern Italy, for which 528 recorded monthly data over a 44-year period are available. The EPR returns a set of non-dominated models, as ordinary differential equations, reproducing the system dynamics. The choice of the representative model can be made both on the basis of its performance against a test data set and based on its incorporation of terms that actually entail physical meaning with respect to the conceptualization of the system.

Citation Doglioni, A., Mancarella, D., Simeone, V. & Giustolisi, O. (2010) Inferring groundwater system dynamics from hydrological time-series data. Hydrol. Sci. J. 55(4), 593–608.  相似文献   
154.
Archaeological and instrumental data indicate that the southern sector of the volcanic island of Lipari has been subsiding for the last 2100 years due to isostatic and tectonic factors, at variable rates of up to ~11 mm a?1. Based on this data, a detailed marine flooding scenario for 2100 AD is provided for the bay of Marina Lunga in the eastern part of the island from (1) an ultra‐high‐resolution Digital Terrain and Marine Model (DTMM) generated from multibeam bathymetry (MB) and Unmanned Aerial Vehicles (UAV), (2) the rate of land subsidence from Global Positioning System (GPS) data and (3) the regional sea‐level projections of the International Panel on Climate Change (IPCC). When land subsidence is considered, the upper bound of sea‐level rise is estimated at 1.36 m and 1.60 m for RCP4.5 and RCP8.5 climate change scenarios, respectively. Here, we show the expected impact of marine flooding at Lipari for the next 85 years and discuss the hazard implications for the population living along the shore.  相似文献   
155.
156.
To define reference structural actions, engineers practicing earthquake resistant design are required by codes to account for ground motion likely to threaten the site of interest and also for pertinent seismic source features. In most of the cases, while the former issue is addressed assigning a mandatory design response spectrum, the latter is left unsolved. However, in the case that the design spectrum is derived from probabilistic seismic hazard analysis, disaggregation may be helpful, allowing to identify the earthquakes having the largest contribution to the hazard for the spectral ordinates of interest. Such information may also be useful to engineers in better defining the design scenario for the structure, e.g., in record selection for nonlinear seismic structural analysis. On the other hand, disaggregation results change with the spectral ordinate and return period, and more than a single event may dominate the hazard, especially if multiple sources affect the hazard at the site. This work discusses identification of engineering design earthquakes referring, as an example, to the Italian case. The considered hazard refers to the exceedance of peak ground acceleration and 1s spectral acceleration with four return periods between 50 and 2475 year. It is discussed how, for most of the Italian sites, more than a design earthquake exists, because of the modeling of seismic sources. Furthermore, it is explained how and why these change with the limit state and the dynamic properties of the structure. Finally, it is illustrated how these concepts may be easily included in engineering practice complementing design hazard maps and effectively enhancing definition of design seismic actions with relatively small effort.  相似文献   
157.
Structural engineering problems are always affected by many sources of uncertainty, such as aleatory of material properties, applied loads and earthquake intensity, therefore, seismic assessment of structures should be based on probabilistic methods. Since PBSD (Performance‐based Seismic Design) philosophy was formulated, many researches have been conducted in this field in order to develop simple and accurate procedures for evaluating structural reliability. An important contribution has been provided by Jalayer and Cornell, who have developed a closed‐form expression to evaluate the mean annual frequency of exceeding a defined limit state. In this paper, by assuming the record‐to‐record variability as the only source of uncertainty, the seismic reliability of concentrically braced frames designed according to traditional and innovative methodologies is investigated, and a comparison between their performances is presented. In particular, two design methodologies have been applied: Eurocode 8 provisions and a new design methodology based on a rigorous application of ‘capacity design’ criteria. The innovative reduced section solution strategy, based on the reduction of cross sections at bracing member ends, has also been analysed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
158.
The Philippines is highly susceptible to both geophysical and climate-related disasters. This article explores Filipinos knowledge and perception of climate change and their association with what action Filipinos take to prepare for rapid onset natural hazards such as typhoons. Data for this study were collected from a nationally representative random survey of 5,184 adults conducted between March and April of 2017. Filipinos self-report relatively low levels of knowledge of climate change and cited increased temperatures, shifts in seasons, and heavier rains as the most likely consequences. Levels of disaster preparedness in the Philippines differ widely by region. Although most Filipinos perceive that natural hazards are a risk to them, only a third of Filipinos undertake measures to prepare for disasters. Filipinos who perceive climate-related changes directly impacting their households report taking greater action to prepare for disasters. Filipinos who believe they have been directly impacted by climate-related changes are also more likely to prepare for disasters, take planning actions, and undertake material actions to prepare, such as dwelling improvements. Other factors associated with disaster preparedness include gender, membership in an association, wealth, risk perception, and prior exposure to and losses due to disasters. The findings imply that, while posing different challenges and requiring different responses, adaptation to climate change and disaster preparedness are inherently associated and potentially mutually reinforcing. Policies and programs would arguably benefit from a more unified intervention framework that links climate change adaptation and disaster preparedness.  相似文献   
159.
The narrow shelf and upper slope immediately above the Gonone canyon head off NE Sardinia represent areas of very low sedimentation rates. Along the sides of the canyon head (1,600 m water depth), the sediment deposits are homogeneous but show alternating light-grey intervals rich in carbonate and dark-grey ones rich in organic matter, possibly related to distal turbidite processes. Deposits older than 50,000 years are already encountered at core depths of 2.50 m, the sedimentation rates varying from 6–21 cm/103 years in the lower parts of two cores and from 1.5–3 cm/103 years in the upper parts. At about 35,000 years BP, both cores show a simultaneous drop in sedimentation rate by a factor of 3, probably in response to local mechanisms of channel avulsion. Lithological, mineralogical and geochemical properties reveal the environmental factors which are responsible for the extremely slow sediment accumulation. The southernmost sector of the coast, and partly also of the shelf, consists of Jurassic limestones which supply only small amounts of fine-grained material transported in suspension. During the last sea-level highstand, the accumulation of the Cedrino River pro-delta remained restricted to the coast, the low siliciclastic sediment yields resulting in poor shelf sediment trapping. The present morphology of the canyon head prevented the occurrence of gravity processes in the deeper part of the canyon system, including the coring sites. Accordingly, deposition was mainly fed by hemipelagic material of planktonic origin, together with only moderate terrigenous inputs. On a wider late Pleistocene timescale, seismic data indicate the occurrence of a coarse-grained, layered turbidite facies, implying a very different architecture of the canyon drainage system probably prior to 60,000 years BP.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号