首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   36篇
  国内免费   8篇
测绘学   21篇
大气科学   58篇
地球物理   251篇
地质学   243篇
海洋学   66篇
天文学   74篇
综合类   1篇
自然地理   52篇
  2024年   2篇
  2023年   6篇
  2021年   18篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   23篇
  2016年   24篇
  2015年   25篇
  2014年   30篇
  2013年   49篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   39篇
  2008年   40篇
  2007年   40篇
  2006年   30篇
  2005年   30篇
  2004年   29篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   12篇
  1998年   11篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
排序方式: 共有766条查询结果,搜索用时 15 毫秒
61.
62.
The former tidal inlet Lake Veere was turned into a stagnant brackish lake in 1961. Ever since, the system has shown a continuous degradation. The current study shows the monitoring results for the macrozoobenthic communities and the abiotic conditions for the period 1990–2008. This includes the first step to remediation, the restoration of the exchange between the tidal marine Eastern Scheldt and Lake Veere in 2004. A continuous decline in water clearance co-occurring with decreasing macrofauna densities and richness was observed till 2004. Water quality (e.g., secchi depth, nutrient levels, and oxygen conditions) improved significantly after the measure at a higher salinity level with less variation. But the macrofauna densities, biomass, and diversity did not improve yet. First indications of changes in the benthic communities by arrival of new and returning species are however observed and show that restoration at macrofauna level follows the improved abiotic conditions with a delay of several years.  相似文献   
63.
64.
We investigated the dynamics of upwelling fronts near a coast. This work was first motivated by laboratory experiments [Bouruet-Aubertot, Linden, Dyn. Atmos. Oceans, 2002] in which the front is produced by the adjustment of a buoyant fluid initially confined within a bottomless cylinder. It was shown that cyclonic eddies consisting of coastal waters are enhanced when the front is unstable near the coast (the outer vertical boundary). The purpose of this paper is to provide further insights into this process. We reproduced the experimental configuration using a three-dimensional model of the primitive equations. We first show that for coastal fronts more potential energy, in terms of the maximum available potential energy, is released than for open-ocean fronts. Therefore, waves of larger amplitude are generated during the adjustment and the mean flow that establishes has a higher kinetic energy in the former case. Then as baroclinic instability starts and wave crests reach the boundary, cyclonic eddies are enhanced as in the laboratory experiments and in a similar way. However, in contrast to the laboratory experiments, offshore advection of cyclonic eddies can occur in two stages, depending on the spatial organization of the baroclinic wave. When the baroclinic wave consists of the sum of different modes and is thus highly asymmetric, the offshore advection of cyclonic eddies occurs just after their enhancement at the boundary, as in the laboratory experiments. By contrast, when a single-mode baroclinic wave develops, neighboring cyclonic eddies first merge before being advected offshore. Very different behavior is observed for open-ocean fronts. First a mixed baroclinic–barotropic instability grows. Then the eddies transfer their energy to the mean flow and the barotropic and baroclinic instabilities start again. An excellent agreement is obtained with the main result obtained in the laboratory experiments: the ratio between growth rates of surface cyclonic and anticyclonic vorticity increases as the instability develops nearer to the coast.  相似文献   
65.
Summary This study uses a 1°×1° lat/long dataset, extracted from ECMWF re-analyses for the 15-year period 1979–1993 (ERA-15), to diagnose the synoptic-scale kinematic, thermodynamic and moisture environments in the vicinity of named tropical cyclones (TCs) in the eastern North Pacific. Based on the NCDC best track dataset, TCs are partitioned into one of three categories: weak (W), strong (S) or intensifying (I). In total, 63TCs are examined: 8Ws and 20Is at point A (maximum intensification) and 11Ws, 13Ss and 11Is at point B (maximum frequency). Composite maps are compiled for all five groups, and six individual case studies are examined, four for extreme TC cases and two for cases involving dry air intrusions.For the most part, peak values and patterns of composited ERA-15 variables display circulation, thermodynamic and moisture characteristics that are compatible with the strength represented by a groups classification. Intercomparison between Ws and Is at points A and B yielded larger conditional instability of low-level air parcels and upper-level outflow within the region of maximum intensification (point A).The intrusions of dry versus moist mid-level air are addressed for each storm with the assistance of 72-hour backward trajectories. Trajectory density maps indicate two preferred paths of air parcels that reach the environment of W storms at point A on the 700 and 500hPa levels. The first one crossed Central America in the region of the Isthmus of Tehuantepec and the second one south of the Central American mountains. Several storms revealed that these trajectories were associated with dry air intrusions into the larger storm area, and this might be one reason for their weak status at point A. One documented example is Kevin (1985). By the time it reached point B, the dry air was replaced by air that was moist and Kevin intensified, although it remained a W system. In contrast, Narda (1989) received a dry air intrusion from Central Mexico at 500hPa as a weak storm at point B and did not intensify. Despite possible analyses problems, the documentation in this study of mid-level dry air intrusions into eastern Pacific TCs from the Mexican-Central American region suggests a hitherto unexploited forecast potential. Received January 15, 2002; revised November 28, 2002; accepted December 19, 2002 Published online: May 8, 2003  相似文献   
66.
We investigate the mesoscale dynamics of the mistral through the wind profiler observations of the MAP (autumn 1999) and ESCOMPTE (summer 2001) field campaigns. We show that the mistral wind field can dramatically change on a time scale less than 3 hours. Transitions from a deep to a shallow mistral are often observed at any season when the lower layers are stable. The variability, mainly attributed in summer to the mistral/land–sea breeze interactions on a 10-km scale, is highlighted by observations from the wind profiler network set up during ESCOMPTE. The interpretations of the dynamical mistral structure are performed through comparisons with existing basic theories. The linear theory of R. B. Smith [Advances in Geophysics, Vol. 31, 1989, Academic Press, 1–41] and the shallow water theory [Schär, C. and Smith, R. B.: 1993a, J. Atmos. Sci. 50, 1373–1400] give some complementary explanations for the deep-to-shallow transition especially for the MAP mistral event. The wave breaking process induces a low-level jet (LLJ) downstream of the Alps that degenerates into a mountain wake, which in turn provokes the cessation of the mistral downstream of the Alps. Both theories indicate that the flow splits around the Alps and results in a persistent LLJ at the exit of the Rhône valley. The LLJ is strengthened by the channelling effect of the Rhône valley that is more efficient for north-easterly than northerly upstream winds despite the north–south valley axis. Summer moderate and weak mistral episodes are influenced by land–sea breezes and convection over land that induce a very complex interaction that cannot be accurately described by the previous theories.  相似文献   
67.
Abstract

Trends in Canadian temperature and precipitation during the 20th century are analyzed using recently updated and adjusted station data. Six elements, maximum, minimum and mean temperatures along with diurnal temperature range (DTR), precipitation totals and ratio of snowfall to total precipitation are investigated. Anomalies from the 1961–1990 reference period were first obtained at individual stations, and were then used to generate gridded datasets for subsequent trend analyses. Trends were computed for 1900–1998 for southern Canada (south of 60°N), and separately for 1950–1998 for the entire country, due to insufficient data in the high arctic prior to the 1950s.

From 1900–1998, the annual mean temperature has increased between 0.5 and 1.5°C in the south. The warming is greater in minimum temperature than in maximum temperature in the first half of the century, resulting in a decrease of DTR. The greatest warming occurred in the west, with statistically significant increases mostly seen during spring and summer periods. Annual precipitation has also increased from 5% to 35% in southern Canada over the same period. In general, the ratio of snowfall to total precipitation has been increasing due mostly to the increase in winter precipitation which generally falls as snow and an increase of ratio in autumn. Negative trends were identified in some southern regions during spring. From 1950–1998, the pattern of temperature change is distinct: warming in the south and west and cooling in the northeast, with similar magnitudes in both maximum and minimum temperatures. This pattern is mostly evident in winter and spring. Across Canada, precipitation has increased by 5% to 35%, with significant negative trends found in southern regions during winter. Overall, the ratio of snowfall to total precipitation has increased, with significant negative trends occurring mostly in southern Canada during spring.

Indices of abnormal climate conditions are also examined. These indices were defined as areas of Canada for 1950–1998, or southern Canada for 1900–1998, with temperature or precipitation anomalies above the 66th or below the 34th percentiles in their relevant time series. These confirmed the above findings and showed that climate has been becoming gradually wetter and warmer in southern Canada throughout the entire century, and in all of Canada during the latter half of the century.  相似文献   
68.
The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research.  相似文献   
69.
The present study is a preliminary interrogation of the ability of ten Earth System Models (ESMs) from the fifth phase of coupled model intercomparison project to characterize seasonal and annual mean precipitation cycle over the Greater Horn of Africa region. Each ESM had at least 2 ensemble members. In spite of distributional anomalies of observations, ESM ensemble means were examined on the basis of gridded precipitation data. Majority of the ten ESMs analyzed correctly reproduce the mean seasonal and annual cycle of precipitation for the period 1979–2008 as compared to gridded satellite-derived observations. At the same time our analysis shows significant biases in individual models depending on region and season. Specifically, a modest number of models were able to capture correctly the peaks of bimodal (MAM and OND) and JJAS rainfall while a few either dragged the onset to subsequent months or displaced the locations of seasonal rainfall further north. Nearly all models were in agreement with their representation of the zonal orientation of spatial pattern of the leading EOF rainfall modes; more so, enhanced precipitation over the Indian Ocean and a dipole mode of precipitation pattern are captured in the first and second mode respectively. Further, the corresponding EOF time series of the ESMs rainfall modes were all in phase with observations. However, all models output were positively biased against observations, with large medians and varied range of anomalies. Therefore, caution needs to be taken when choosing models for applications over the region, especially when ensemble means have to be considered.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号