首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   43篇
  国内免费   8篇
测绘学   21篇
大气科学   57篇
地球物理   248篇
地质学   243篇
海洋学   62篇
天文学   82篇
综合类   1篇
自然地理   52篇
  2024年   2篇
  2023年   6篇
  2021年   18篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   23篇
  2016年   22篇
  2015年   24篇
  2014年   29篇
  2013年   50篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   41篇
  2008年   41篇
  2007年   40篇
  2006年   28篇
  2005年   30篇
  2004年   30篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   13篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
排序方式: 共有766条查询结果,搜索用时 15 毫秒
601.
The chlorophyll a specific absorption coefficient of phytoplankton, aφ(λ) is an important parameter to determine for primary production models and for the estimation of phytoplankton physiological condition. Knowledge of this parameter at high latitudes where nutrient rich cold water submitted to low incident light is a common environment is almost nonexistent. To address this issue, we investigated the light absorption properties of phytoplankton as a function of irradiance, temperature, and nutrients using a large data set in the southern Beaufort Sea during the open water to ice cover transition period. The aφ(λ) tended to increase from autumn when open water still existed to early winter when sea ice cover was formed, resulting from a biological selection of smaller-size phytoplankton more efficient to absorb light. There was no significant correlation between aφ(λ) and irradiance or temperature for both seasons. However, aφ(λ) showed a significant positive correlation with NO3 + NO2. Implications of the results for phytoplankton community adaptation to changing light levels are discussed.  相似文献   
602.
Fluxes of the heavy metals chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd) and zinc (Zn) delivered by rivers to the Gulf of Lion (NW Mediterranean Sea) were estimated over a three year study of the River Rhone and its smaller tributaries. Most of the particulate metal fluxes (80–90%) delivered by these rivers occurred within a very short period of time (less than 12%), a typical trend for the Mediterranean environment, where highly contrasting hydrological regimes were observed over the year. Temporal and spatial variations in the fluxes of these particulate metals were driven by the fluxes in both water discharge and suspended particulate matter load. On the shelf, these particulate metal fluxes, largely arising from the Rhone watershed, were two to ten times more important than those resulting from atmospheric deposition. Co, Cr and Ni in the rivers and on the shelf surface sediments were mainly natural and associated with the finest particles. Cd and Phosphorus appeared to be associated with the silt fraction and to be enriched in the prodelta areas. Pb, Zn and Cu were more closely associated with the organic matter content and also showed enrichment in the organic rich prodeltaic sediments. Anthropogenic influences diminished offshore, except for Pb and Zn which could be supplied from the atmosphere by man-made aerosols. Although most of the metals tended to be enriched in the prodelta areas, these did not constitute a permanent sink due to resuspension processes affecting these shallow depths. A resuspension experiment conducted on sediment cores from the Rhone prodelta demonstrated that metal deposited on the surface layer, especially those associated with the organic matter, may be resuspended; this should be taken into account for a complete understanding of the biogeochemical cycle of these metals.  相似文献   
603.
A seasonal simulation from a medium-resolution ocean general circulation mode (OGCM) is used to investigate the vertical structure variability of the Southeast Pacific (SEP). The focus is on the extra-tropical Rossby wave (ETRW) variability and associated forcing mechanism. Some aspects of the model mean state are validated from available observations, which justifies a vertical mode decomposition of the model variability. The analysis of the baroclinic mode contributions to sea level indicates that the gravest mode is dominant over most of the domain at all frequencies. Annual variability is on average twice as large as the semi-annual variability which is confined near the coast for all the modes. The first baroclinic mode contribution to the annual cycle exhibits a clear westward propagation north of the critical latitude. The higher-order modes only contribute near the coast where they are associated with vertically propagating energy. The residual variability, which is the energy at all timescales other than annual and semi-annual periods peaks offshore between 20°S and 30°S for all baroclinic modes. The third baroclinic mode also exhibits a relative maximum variability off the coast of Peru south of the critical latitude of the annual cycle (13°S), where the Peru–Chile Undercurrent is the most intense. Sensitivity experiments to the atmospheric and boundary forcing suggest that the residual variability results from the non-linear interaction between annual Rossby waves and the mean flow, while the annual ETRWs in the model result from the summed-contribution from both the local wind stress and remote equatorial forcing. Overall the study extends the classical analysis of sea level variability in the SEP based on linear theory, and suggests that the peculiarities of the baroclinic modes need to be taken into account for interpreting the sea level variability and understanding its connection with the equatorial variability.  相似文献   
604.
The austral summer monsoon onset and post-onset rainfall and their associated low-level winds are analyzed during the August–February season over Indonesia from 1979 to 2006 using surface and satellite products as well as reanalyses and regional climate model simulations. Onset date is defined using a local agronomic definition. Its leading empirical orthogonal function is found to exhibit a regional-scale spatially-coherent signal across “monsoonal” Indonesia, i.e. mostly south of the equator, with an asymmetric temporal behavior, such that delayed onsets are more intense than early ones. Associated anomalies in rainfall tend to weaken quickly after mid-to-late November or early December, especially over islands, while they tend to persist over ocean. This weakening is shown to be associated with the evolution of distinct weather types revealed by a k-means cluster analysis. In particular, late onsets—usually related to warm El Niño Southern oscillation events—are found to be accompanied by an increased prevalence of a weather type characterized by weak low-level daily-averaged winds across monsoonal Indonesia and increased (decreased) rainfall over most of the island orography and southern and western coasts (seas). The regional model simulations provide evidence that this land–sea rainfall contrast could be associated with an enhanced diurnal sea-land breeze circulation.  相似文献   
605.
Caribbean rainfall and associated regional-scale ocean–atmosphere anomalies are analyzed during and after warm pool (WP) and cold tongue (CT) El Niño (EN) events (i.e. from the usual peak of EN events in boreal winter to next summer from 1950 to 2011). During and after a CT event, a north–south dipolar pattern with positive (negative) rainfall anomalies over the northern (southern) Caribbean during the boreal winter tends to reverse in spring, and then to vanish in summer. On the contrary, during and after a WP event, weak rainfall anomalies during the boreal winter intensify themselves from spring, with anomalous wet conditions over most of the Caribbean basin observed during summer, except over the eastern coast of Nicaragua and Costa Rica. The Caribbean rainfall anomalies associated with WP and CT events are shaped by competition between at least four different, but interrelated, mechanisms; (1) the near-equatorial large-scale subsidence anomaly over the equatorial Atlantic linked to the zonal adjustment of the Walker circulation; (2) the extra-tropical wave-like train combining positive phase of the Pacific/North American mode and negative phase of the North Atlantic Oscillation; (3) the wind-evaporation-sea surface temperature (SST) positive feedback coupling warmer-than-normal SST with weaker-than-normal low level easterlies over the tropical North Atlantic; and (4) the air-sea coupling between the speed of low level easterlies, including the Caribbean low level jet, and the SST anomaly (SSTA) gradient between the Caribbean basin and the eastern equatorial Pacific. It seems that Caribbean rainfall anomalies are shaped mostly by mechanisms (1–3) during CT events from the boreal winter to spring. These mechanisms seem less efficient during WP events when the atmospheric response seems driven mostly by mechanism (4), coupling positive west-east SSTA gradient with weaker-than-normal low level easterlies, and secondary by mechanism (3), from the boreal spring to summer.  相似文献   
606.
Rainfall variability dominates livelihoods in all countries of Saharan Africa. To better understand the processes involved in Sahara precipitation changes, we used the Global Precipitation Climatology Center(GPCC) dataset to examine dry and wet seasonal trends in the Sahara region from 1979 to 2016. We also used the European Centre for Medium-Range Weather Forecasts(ECMWF) to evaluate the general atmospheric circulation associated with seasonal change of Sahara precipitation. The Mann-Kendall test and Theil sens' slope estimator methods were adopted to test and estimate the significance and weight of precipitation trend, respectively. The results revealed that Sahara precipitation has increased significantly.The seasonal evaluation shows a positive trend of 0.42 mm/decade and 1.43 mm/decade in JAS(June, August, and September) seasons for the northern and southern Saharan Desert, respectively. Moreover, the JFMA(January, February,March, and April) period shows a negative trend but not statistically significant. An examination of the general circulation and moisture transport changes suggested an increase of rainfall in southern Sahara. The wet period is also driven by northward penetration of moisture originating from the Sahel region, African Easterly Jet(AEJ), and weakening in the upper tropospheric zonal wind. Summer rainfall has also been likely associated with positive anomalies of sea surface temperature(SST) in the North Tropical Atlantic(NTA) and the Mediterranean Sea.  相似文献   
607.
平面P波在饱和半空间中洞室周围的散射(Ⅰ):解析解   总被引:2,自引:2,他引:0  
利用波函数展开法给出了入射平面P波在饱和半空间中圆形洞室周围散射问题的一个解析解。半空间假定为无粘性流体饱和介质,满足Biot理论。采用一种基于实验数据的孔隙率和模量之间的线性关系来确定Biot模型中的介质参数。解答考虑了透水边界和非透水边界两种情况。对边界条件进行了数值检验,结果表明,随着级数截断项数的增大,边界残量衰减很快。解答为进一步研究入射波频率和角度、边界渗透条件、孔隙率、泊松比等参数对散射的影响奠定了基础。  相似文献   
608.
Management of open-channel flow systems requires accurate models of flow transfer. This article presents a simple nonlinear model representative of the flow transfer in a river reach. The model is obtained through linearization of a physical model, simplification using the cumulant matching method and analytic identification of a nonlinear model coinciding with the linear model around equilibrium points, corresponding to the hydraulic permanent regimes. The methodology is illustrated on the diffusive wave equation and the Saint-Venant equations. The obtained nonlinear models are compared in simulation to the initial models. The nonlinear model is shown to ensure mass conservation, despite the variable delay element of the model. The proposed model can reproduce the nonlinear behavior of the time-delay with discharge variations. It is well-suited for fast simulations, flow forecasting, and for controller design.  相似文献   
609.
We describe the space discretization of a three-dimensional baroclinic finite element model, based upon a discontinuous Galerkin method, while the companion paper (Comblen et al. 2010a) describes the discretization in time. We solve the hydrostatic Boussinesq equations governing marine flows on a mesh made up of triangles extruded from the surface toward the seabed to obtain prismatic three-dimensional elements. Diffusion is implemented using the symmetric interior penalty method. The tracer equation is consistent with the continuity equation. A Lax–Friedrichs flux is used to take into account internal wave propagation. By way of illustration, a flow exhibiting internal waves in the lee of an isolated seamount on the sphere is simulated. This enables us to show the advantages of using an unstructured mesh, where the resolution is higher in areas where the flow varies rapidly in space, the mesh being coarser far from the region of interest. The solution exhibits the expected wave structure. Linear and quadratic shape functions are used, and the extension to higher-order discretization is straightforward.  相似文献   
610.
Diffraction of a two-dimensional (2D) semi-circular cavity in a half-space under incident SH-waves is studied using the classic wave function expansion method with a new de-coupling technique. This so-called “improved cosine halfrange expansion” algorithm exhibits an excellent performance in reducing displacement residual errors at two rim points of concern. The governing equations are developed in a manner that minimizes the residues of the boundary conditions. Detailed derivation and analysis procedures as well as truncation of infinite linear governing equations are presented. The semi-circular cavity model presented in this paper, due to its simple profile, is expected to be used in seismic wave propagation studies as a benchmark for examining the accuracies of various analytical or numerical methods for mixed-boundary wave propagation problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号