首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   714篇
  免费   43篇
  国内免费   8篇
测绘学   21篇
大气科学   57篇
地球物理   248篇
地质学   242篇
海洋学   62篇
天文学   82篇
综合类   1篇
自然地理   52篇
  2023年   6篇
  2021年   18篇
  2020年   10篇
  2019年   14篇
  2018年   31篇
  2017年   23篇
  2016年   22篇
  2015年   24篇
  2014年   29篇
  2013年   50篇
  2012年   32篇
  2011年   36篇
  2010年   48篇
  2009年   41篇
  2008年   41篇
  2007年   40篇
  2006年   28篇
  2005年   30篇
  2004年   30篇
  2003年   32篇
  2002年   23篇
  2001年   14篇
  2000年   12篇
  1999年   13篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   10篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1971年   2篇
  1907年   1篇
排序方式: 共有765条查询结果,搜索用时 15 毫秒
391.
The drilling of new cores performed for ANDRA in eastern France allowed us to compare palynological data between central and eastern parts of the Paris Basin. Such a comparison, which was also motivated by the existence of a set of geochemical data in contradiction with the first palynological results, showed a spatial differentiation in palynological record from the Oxfordian. Such a palynological signal could result from overlapping of both local and global signals, the latter being in connection with the contemporaneous opening of proto-Atlantic Ocean. It could also be of major palaeogeographic and palaeoclimatic interest. To cite this article: V. Huault et al., C. R. Geoscience 335 (2003).  相似文献   
392.
393.
The mean sea surface temperature anomalies (SSTA) of the Mediterranean Sea during the past 150 years (1856–2000) are analysed. The first empirical orthogonal function (EOF) of the covariance matrix of the SSTA explains more than 45% of the variance, suggesting that the temporal variation of the Mediterranean Sea is largely in phase over the whole basin. The mean variability of Mediterranean SSTA from 1856 to 2000 superposes a main irregular oscillation (period of 60–70 years and mean amplitude of 0.4–0.5 °C) and a weak long-term positive trend (equivalent to an increase of +0.1 °C per century). The last warm phase, which is strongest in the western basin, is not warmer than the decade 1935–1945 or the ending part of the 1960s. The mean temporal evolution of the North Hemisphere is close to the variation of the Mediterranean Sea, except that the long-term increase is more intense in the North Hemisphere. To cite this article: V. Moron, C. R. Geoscience 335 (2003).  相似文献   
394.
Te Whaiau Formation is a massive volcaniclastic deposit interbedded within gravelly and sandy volcanogenic sediments of the northwestern Tongariro ring plain. The ca. 0.5-km3 deposit comprises a clay-rich, matrix-supported diamicton with lithological and physical properties that are typical of a cohesive debris-flow deposit. Clays identified in the matrix are derived from hydrothermally altered andesite lava and pyroclastic rocks. The distribution pattern of the deposit, and the nature of the clay matrix, point to a source area that was located in the vicinity of Mt. Tongariro's current summit (1967 m). Most of the proximal zone is buried under late Pleistocene lavas forming the northwestern flank of the massif. In contrast, the medial and distal zones are well exposed to the northwest in the Whanganui River catchment. Lithofacies exposed in these latter zones contain isolated volcaniclastic megaclasts and well-preserved, jointed blocks of andesite. Small hummocks, up to 5 m high, are present only in the distal margins of the deposit. Based on these observations, possible source areas and analogy with similar deposits elsewhere, we infer that Te Whaiau Formation was initiated as a fluid-saturated debris avalanche that transformed downstream into a single, cohesive debris flow. It is interpreted that the mass flow was initially confined to the northwestern flank of Tongariro before spreading laterally onto the lowlands to the northwest. The resulting heterolithological diamicton filled stream channels in the western sector of the Tongariro ring plain. At 15 km from source, the debris flow encountered an elevated terrain, which acted as a barrier to further spreading to the north. The stratigraphy of the cover beds and K/Ar data on an underlying lava indicate that Te Whaiau Formation was emplaced between 55 and 60 ka, a cool period characterized by intense volcaniclastic sedimentation around the Tongariro massif. Jigsaw-fit fractured volcanic bombs suggest that an explosive eruption through hydrothermally altered rock and pyroclastic deposits probably triggered the mass flow. The characteristics of the deposit indicate that a large portion of the proto-Tongariro edifice collapsed en masse to form the initial avalanche. Hence, we infer that the current morphology of Tongariro volcano is derived not only from glacial erosion, but also from gravitational failure. Prehistoric eruptions and current geothermal activity on the upper northern and western slopes of the Tongariro massif suggest that avalanche-induced debris flows must be considered a potential future volcanic hazard for the region.  相似文献   
395.
396.
We determined in situ cosmogenic 10Be ages for nine boulders sampled on the Salpausselkä I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from 10.9±1.0 to 13.5±1.2 10Be ka, with an error-weighted mean age of 12.4±0.7 10Be ka. Our results confirm four previous 10Be ages obtained 40 km northeast of our sample location. The combined data (n=13) indicate that retreat from the Ss I Moraine occurred at 12.5±0.7 10Be ka, in excellent agreement with an age of 12.1 ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.  相似文献   
397.
398.
399.
Interpretations of space-based measurements of atmospheric parameters in the mesosphere and thermosphere are complicated by large local-time variations at these altitudes. For this reason, satellite orbits are often preferred which precess through all local times one or more times per season. However, the local-time structure of the atmosphere is inherently non-stationary, which can lead to sampling and aliasing difficulties when attempting to deconvolve the measurements into zonal mean and tidal components. In the present study, hourly radar measurements of mesopause-region winds are used to form a mock data base which can be used to gain insight into implications of the aforementioned problems; the use of actual measurements introduces a realistic element of geophysical temporal variability. Assuming zonal symmetry (i.e., migrating tides superimposed on a zonal mean circulation), the radar measurements are sampled from the satellite perspective for orbital inclinations of 57° and 70°, and compared to the ground or true perspective. These comparisons provide realistic estimates of the errors to be expected when attempting to derive mean and tidal components from space-based measurements. For both diurnal and semidiurnal components, and the quoted satellite inclinations, acceptable errors (3–4 m/s rms) are obtained for data covering 24 h local time (i.e., ascending plus descending nodes); the corresponding errors for singlenode data (12 h local-time coverage) are of order 8–11 m/s, and therefore may not represent reliable estimates of the actual tidal components. There exist certain caveats in connection with the latter conclusion which are discussed.  相似文献   
400.
The Global-Scale Wave Model (GSWM) is a steady-state two-dimensional linearized model capable of simulating the solar tides and planetary waves. In an effort to understand the capabilities and limitations of the GSWM throughout the upper mesosphere and thermosphere a comparative analysis with observational data is presented. A majority of the observational data used in this study was collected during the World Day campaign which ran from 20 January to 30 January 1993. During this campaign data from 18 ground-based observational sites across the globe and two instruments located on the UARS spacecraft were analyzed. Comparisons of these data with the simulations from the GSWM indicate that the GSWM results are in reasonable agreement with the observations. However, there are a number of cases where the agreement is not particularly good. One such instance is for the semidiurnal tide in the northern hemisphere, where the GSWM estimates may exceed observations by 50%. Through a number of numerical simulations, it appears that this discrepancy may be due to the eddy diffusivity profiles used by the GSWM. Other differences relating to the diurnal tide and the quasi-two-day wave are presented and discussed. Additionally, a discussion on the biases and aliasing difficulties which may arise in the observational data is alos presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号