首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   13篇
  国内免费   10篇
测绘学   51篇
大气科学   31篇
地球物理   218篇
地质学   303篇
海洋学   35篇
天文学   196篇
综合类   9篇
自然地理   30篇
  2022年   7篇
  2021年   11篇
  2020年   10篇
  2019年   14篇
  2018年   36篇
  2017年   32篇
  2016年   44篇
  2015年   21篇
  2014年   30篇
  2013年   34篇
  2012年   24篇
  2011年   32篇
  2010年   31篇
  2009年   33篇
  2008年   38篇
  2007年   32篇
  2006年   26篇
  2005年   22篇
  2004年   11篇
  2003年   14篇
  2002年   14篇
  2001年   17篇
  2000年   16篇
  1999年   15篇
  1998年   19篇
  1997年   11篇
  1996年   10篇
  1995年   14篇
  1994年   15篇
  1993年   11篇
  1992年   7篇
  1991年   19篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   13篇
  1984年   9篇
  1983年   9篇
  1982年   19篇
  1981年   8篇
  1980年   12篇
  1979年   11篇
  1978年   11篇
  1977年   7篇
  1974年   10篇
  1973年   10篇
  1972年   12篇
  1971年   10篇
排序方式: 共有873条查询结果,搜索用时 78 毫秒
171.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   
172.
In this paper, an analytical expression for the deflection of a thin circular elastic plate resting on the Pasternak foundation is derived by adopting the strain energy approach. The parametric study is carried out to observe the location of the plate lift-off and the variation of the deflection profiles for comparing the variation pattern reported in the literature based on an approximate solution technique. It is found that the radial distance of the point of lift-off of the plate decreases with increase in the values of both the shear modulus and the modulus of subgrade reaction of the foundation soil; the reduction being more for their lower values. It is also observed that the variation in deflection of the plate at any radial distance due to change in soil subgrade conditions is significant for lower values of modulus of subgrade reaction.  相似文献   
173.
A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, NO3 , Cl, F, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved solids (TDS), HCO3 , Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect the spatial variation of water quality. Economic and social developments of the study area is closely associated with the characteristics of the hydrological network.  相似文献   
174.
We present values of velocity of ground water percolation (Vg) over large depth intervals, varying from shallow to deeper depths in Indaram area of Godavari sub-basin. The velocities have been estimated using available measured geothermal data. Sub-surface temperatures were measured in seven boreholes. Terrestrial heat flow values are calculated using temperature data and measured values of thermal conductivity of core samples. The results show that Vg is ~3.4 ×10?7 cm /sec in the top layers (70–150 m) and decreases to ~0.04×10?7 cm/sec in the deeper levels around 350 m depth and becomes negligibly small thereafter, thereby, indicating that the overall permeability of the sub-surface layers, due to the occurrence of successions of permeable, semi-permeable layers gets reduced to more or less zero at depths around 350 m. The value of Thermal Peclet Number, which is the ratio of the heat transfer through convection to that through conduction, naturally becomes negligible around this depth in the area. The observed consistency of the magnitude of heat flow through various deep sections is a clear indicator that water percolation is practically reduced to zero at depths around 320–400 m and that conduction is the dominant mechanism of heat transfer below the inferred depth section, while the upper layers are dominated by recharge at various depths by near surface water from streams at Indaram.  相似文献   
175.
Paragonite (NaAl2Si3AlO10(OH)2), a dioctahedral sodium mica, occurs as a minor phase in the wall rock alteration assemblage of the Guddadarangavanahalli (G. R. Halli) gold deposit of Western Dharwar Craton, Karnataka. It occurs as colourless to pale yellowish grains and scaly aggregates in chlorite, ankerite and quartz rich matrix of the altered metabasalt. Its presence is noticed in the distal to near proximal wall rock alteration zone, mainly in the southern part of the G. R. Halli gold deposit. Presence of paragonite is identified by X-Ray Diffraction (XRD) and Electron Probe Micro-Analyzer (EPMA) studies. The Na2O content of the paragonite varies between 5.96 wt% and 7.8 wt% whereas K2O ranges from 0.44–2.68 wt%. Al2O3 is measured between 37.73 wt% and 39.72 wt% whereas SiO2 varies from 45.06–47.19 wt%. The relative proportion of Na and K in paragonite varies between Na96K4 and Na77K23. The occurrence of paragonite in the wall rock alteration halo of the G. R. Halli gold deposit is proposed as a result of hydrolysis of metamorphosed plagioclase feldspars during the interaction of the hydrothermal fluids and the wall rock.  相似文献   
176.
The present study focuses on the hydrogeochemical composition of groundwater in Chhatarpur area with special focus on nitrate and fluoride contamination, considering the fact that groundwater is the only major source of drinking water here. Carbonate and silicate mineral weathering followed by ground water–surface water interactions, ion exchange and anthropogenic activities are mainly responsible for high concentrations of cations and anions in the groundwater in the region. The average concentration of nitrate and fluoride found in 27 samples is 1.08 and 61.4 mg/L, respectively. Nitrate enrichment mainly occurs in areas occupied with intense fertilizer practice in agricultural fields. Since the area is not dominated by industrialization, the possibility of anthropogenic input of fluoride is almost negligible, thus the enrichment of fluoride in groundwater is only possible due to rock–water interaction. The highly alkaline conditions, which favor the fluorite dissolution, are the main process responsible for high concentration of fluoride.  相似文献   
177.
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented using the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.  相似文献   
178.
179.
180.
Abstract. Municipal solid waste combustion leads to concentration of various metals in the solid residue (fly ash) remaining after combustion. These metals pose serious environmental hazard and require proper handling and monitoring in order to control their harmful effects. Leachability of some metals from fly ash was examined in fly ash and Milli-Q water mixture (liquid-to-solid ratio, 100) under various temperature and pH conditions in the laboratory. The leaching experiments conducted for 24 hours showed that pH was generally more important than temperature in controlling the amount of metals leached out of the fly ash. However, at a given pH, rise in temperature led to different degree of (usually one to two fold) enhanced or reduced leaching of metals. Owing to amphoteric nature of oxides of Al, Cr, Pb and Zn, these metals often yielded typical pattern of increase and decrease in their concentrations with change in pH. The extent of leaching of Cr and Pb in our experiments suggests that decrease of pH to acidic range in the case of Pb and to neutral to acidic range for Cr over a long period of storage of fly ash at solid waste dumping site may facilitate leaching of these metals from fly ash, leading to contamination of groundwater to the level that exceeds beyond the level permitted by the environmental laws.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号