全文获取类型
收费全文 | 235篇 |
免费 | 10篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 8篇 |
大气科学 | 22篇 |
地球物理 | 114篇 |
地质学 | 65篇 |
海洋学 | 11篇 |
天文学 | 21篇 |
综合类 | 3篇 |
自然地理 | 4篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 17篇 |
2017年 | 12篇 |
2016年 | 15篇 |
2015年 | 10篇 |
2014年 | 18篇 |
2013年 | 21篇 |
2012年 | 19篇 |
2011年 | 5篇 |
2010年 | 7篇 |
2009年 | 13篇 |
2008年 | 7篇 |
2007年 | 7篇 |
2006年 | 5篇 |
2005年 | 5篇 |
2004年 | 5篇 |
2003年 | 7篇 |
2002年 | 7篇 |
2001年 | 5篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1993年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1988年 | 6篇 |
1987年 | 5篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1981年 | 5篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有248条查询结果,搜索用时 32 毫秒
201.
A method is presented for the retrieval of classification parameters of clouds observed by satellite-borne imaging systems. It is based on a two-dimensional fast Fourier transform of cloud images and an analysis of their power spectra. The parameters retrieved provide quantitative information on mean brightness, size, shape and directional properties of clouds. The efficacy of the subdivision of the original cloud image into smaller regions and the determination of individual parameters is demonstrated by applying this procedure to some NOAA and INSAT cloud images. 相似文献
202.
Mingzhong?Xiao Qiang?ZhangEmail author Vijay?P.?Singh Xiaohong?Chen 《Theoretical and Applied Climatology》2017,127(3-4):667-683
Results from high resolution 7-km WRF regional climate model (RCM) simulations are used to analyse changes in the occurrence frequencies of heat waves, of precipitation extremes and of the duration of the winter time freezing period for highly populated urban areas in Central Europe. The projected climate change impact is assessed for 11 urban areas based on climate indices for a future period (2021–2050) compared to a reference period (1971–2000) using the IPCC AR4 A1B Scenario as boundary conditions. These climate indices are calculated from daily maximum, minimum and mean temperatures as well as precipitation amounts. By this, the vulnerability of these areas to future climate conditions is to be investigated. The number of heat waves, as well as the number of single hot days, tropical nights and heavy precipitation events is projected to increase in the near future. In addition, the number of frost days is significantly decreased. Probability density functions of monthly mean summer time temperatures show an increase of the 95th percentile of about 1–3 °C for the future compared with the reference period. The projected increase of cooling and decrease of heating degree days indicate the possible impact on urban energy consumption under future climate conditions. 相似文献
203.
Yongqin David Chen Qiang Zhang Mingzhong Xiao Vijay P. Singh Yee Leung Luguang Jiang 《Theoretical and Applied Climatology》2014,116(3-4):447-461
Regional frequency analysis and spatial–temporal patterns of precipitation extremes are investigated based on daily precipitation data covering 1960–2009 using the index-flood L-moments method together with some advanced statistical tests and spatial analysis techniques. The results indicate that: (1) the entire Yangtze River basin can be divided into six homogeneous regions in terms of extreme daily precipitation index. Goodness-of-fit test indicates that Pearson type III (PE3, three parameters), general extreme-value (GEV, three parameters), and general normal (GNO, three parameters) perform well in fitting regional precipitation extremes; (2) the regional growth curves for each homogeneous region with 99 % error bands show that the quantile estimates are reliable enough and can be used when return periods are less than 100 years, and the results indicate that extreme precipitation events are highly probable to occur in regions V and VI, and hence higher risk of floods and droughts; and (3) spatial patterns of annual extreme daily precipitation with return period of 20 years indicate that precipitation amount increases gradually from the upper to the lower Yangtze River basin, showing higher risks of floods and droughts in the middle and lower Yangtze River basin, and this result is in good agreement with those derived from regional growth curves. 相似文献
204.
Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning 总被引:1,自引:0,他引:1 下载免费PDF全文
Evaporation of water from free water surfaces or from land surfaces is one of the main components of the hydrological cycle, and its occurrence is governed by various meteorological and physical factors. There is a multitude of models developed for estimating daily evaporation values by using weather data. This paper evaluates a Gene Expression Programming (GEP) model for estimating evaporation through spatial and temporal data scanning techniques. It is by using ‘leave‐one‐out’ procedures, a complete scan of the possible train and test set configurations is carried out according to temporal and spatial criteria. Comparison of the GEP model with empirical‐physical models shows that daily evaporation values computed by the GEP model are more accurate. Further, local calibration of the GEP model may not be needed, if enough climatic data are available at other stations. The performance of the GEP model fluctuates throughout the period of study and between stations. A suitable assessment of the model should consider a complete temporal and/or spatial scan of the data set used. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
205.
While evapotranspiration (ET) is normally measured as one hydrologic component, evaporation (E), and transpiration (T) result from different physical-biological processes. Using a two-source model, a trapezoid framework has been widely applied in recent years. The key to applying the trapezoid framework model is the determination of the dry/wet boundaries of the land surface temperature-fractional vegetation coverage trapezoid (LST-fc). Although algorithms have been developed to characterize the two boundaries, there remains a significant uncertainty near the wet boundary which scatters in a discrete and uneven manner. It is therefore difficult to precisely locate the wet boundary. To address this problem, a Wet Boundary Algorithm (WBA) was developed in this study with the algorithm applied in the region of Huang-Huai-Hai plain of China, using the Pixel Component Arranging and Comparing Algorithm (PCACA) to retrieve ET from MODerate-resolution Imaging Spectroradiometer (MODIS) Data. The eddy covariance (EC) measurements from Yucheng station was used to verify the modified model where the root mean square error (RMSE) of 17.8 W/m2, Bias of −7.2 W/m2 for latent heat flux (LE) simulation in 28 cloudless test days. The ratio of transpiration to evapotranspiration (T/ET) varied between 0.48 and 0.81 over the Huang-Huai-Hai plain. The spatial and temporal distribution of ET revealed that agriculture practices have a significant influence on the hydrological cycle, where crop growth promotes the magnitude of ET. Likewise, harvesting activities significantly reduce ET. The proposed WBA algorithm significantly reduces the uncertainty of the trapezoid ET model caused by wet edge positioning. The analysis of the impact of agricultural activities on ET provide a better understanding how human activities change the hydrological cycle at regional scales. 相似文献
206.
Revisiting the stratigraphy of the Mesoproterozoic Chhattisgarh Supergroup,Bastar craton,India based on subsurface lithoinformation 总被引:1,自引:0,他引:1
Arunangshu Mukherjee Ranjan Kumar Ray Dinesh Tewari Vijay Kumar Ingle Bikram Kumar Sahoo M W Y Khan 《Journal of Earth System Science》2014,123(3):617-632
In the last 10 years, several teams of geologists from different institutions in India and abroad have vigorously investigated the Chhattisgarh basin (Bastar craton, India). Based on the new results and the lithologs of more than 350 water wells, resistivity and gamma-ray logs, and extensive geological traverses, we present a revised geological map, relevant cross sections, a new comprehensive stratigraphic column and a discussion of the new findings. Major outcomes of this revision are: (1) confirming the existence of two sub-basins (Hirri and Baradwar) and two depocentres; (2) establishing the age of the basin to be essentially Mesoproterozoic; (3) discarding the ‘unclassified Pandaria Formation’ and classifying the package of Pandaria rock units into Chandi, Tarenga, Hirri and Maniari formations in the Hirri sub-basin; (4) accepting the ‘group’ status of the Singhora Group and the newly proposed Kharsiya Groups in the Baradwar sub-basin; (5) establishing an intrabasinal correlation of formations; (6) reappraising the thicknesses of the different formations; and (7) finding that the geometry of the basin is ‘bowl-shaped’, which is compatible with a sag model for the origin and evolution of the basin. 相似文献
207.
Here the stability of triangular libration points when both the attracting bodies are radiating as well has been investigated under the non-resonance cases. It is found that except for some cases for all values of the radiation reduction factors and for all values of <0.0285954..., the motion will be stable. 相似文献
208.
The objective of this study is to develop data-driven models, including multilayer perceptron (MLP) and adaptive neuro–fuzzy inference system (ANFIS), for estimating daily soil temperature at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using MLP. The ANFIS is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs). From the performance evaluation and scatter diagrams of MLP and ANFIS models, MLP 3 produces the best results for both stations at different depths (10 and 20 cm), and ANFIS 3 produces the best results for both stations at two different depths except for Champaign station at the 20 cm depth. Results of MLP are better than those of ANFIS for both stations at different depths. The MLP-based spatial distribution is used to estimate daily soil temperature using the best input combinations (one, two, and three inputs) at different depths below the ground. The MLP-based spatial distribution estimates daily soil temperature with high accuracy, but the results of MLP and ANFIS are better than those of the MLP-based spatial distribution for both stations at different depths. Data-driven models can estimate daily soil temperature successfully in this study. 相似文献
209.
Xinjun Tu Qiang Zhang Vijay P. Singh Xiaohong Chen Chun-Ling Liu Shao-Bo Wang 《Stochastic Environmental Research and Risk Assessment (SERRA)》2012,26(6):823-834
Due to the influence of climate change and human activities, more and more regions around the world are nowadays facing serious water shortages. This is particularly so with the Guangdong province, an economically prosperous region in China. This study aims at understanding the abrupt behavior of hydrological processes by analyzing monthly precipitation series from 257 rain gauging stations and monthly streamflow series from 25 hydrological stations using the likelihood ratio statistic and schwarz information criterion (SIC). The underlying causes of the changing properties of hydrological processes are investigated by analyzing precipitation changes and information of water reservoirs. It is found that (1) streamflow series in dry season seems to exhibit abrupt changes when compared to that in the flood season; (2) abrupt changes in the values of mean and variance of hydrological variables in the dry season are more common than those in the streamflow series in the flood season, which implies that streamflow in the dry season is more sensitive to human activities and climate change than that in the flood season; (3) no change points are identified in the annual precipitation and precipitation series in the flood season. Annual streamflow and streamflow in the flood season exhibit no abrupt changes, showing the influence of precipitation on streamflow changes in the flood season. However, streamflow changes in the dry season seem to be heavily influenced by hydrological regulations of water reservoirs. The results of this study are of practical importance for regional water resource management in the Guangdong province. 相似文献
210.
The generation of internal gravity waves by barotropic tidal flow passing over a two-dimensional topography is investigated. Rather than calculating the conversion of tidal energy, this study focuses on delineating the geometric characteristics of the spatial structure of the resulting internal wave fields (i.e., the configurations of the internal beams and their horizontal projections) which have usually been ignored. It is found that the various possible wave types can be demarcated by three characteristic frequencies: the tidal frequency, ω0; the buoyancy frequency, N; and the vertical component of the Coriolis vector or earth's rotation, f. When different possibilities arising from the sequence of these frequencies are considered, there occur 12 kinds of wave structures in the full 3D space in contrast to the 5 kinds identified by the 2D theory. The constant wave phase lines may form as ellipses or hyperbolic lines on the horizontal plane, provided the buoyancy frequency is greater or less than the tidal frequency. The effect that stems from the consideration of the basic flow is also found, which not only serves as the reason for the occurrence of higher harmonics but also increases the wave strength in the direction of basic flow. 相似文献