首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   23篇
  国内免费   8篇
测绘学   44篇
大气科学   36篇
地球物理   170篇
地质学   184篇
海洋学   20篇
天文学   125篇
综合类   10篇
自然地理   19篇
  2022年   4篇
  2021年   8篇
  2020年   8篇
  2019年   7篇
  2018年   30篇
  2017年   27篇
  2016年   28篇
  2015年   21篇
  2014年   27篇
  2013年   40篇
  2012年   32篇
  2011年   18篇
  2010年   19篇
  2009年   26篇
  2008年   21篇
  2007年   20篇
  2006年   17篇
  2005年   12篇
  2004年   12篇
  2003年   14篇
  2002年   16篇
  2001年   10篇
  2000年   14篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   6篇
  1994年   9篇
  1993年   2篇
  1992年   2篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1988年   12篇
  1987年   12篇
  1986年   8篇
  1985年   4篇
  1984年   4篇
  1983年   8篇
  1982年   6篇
  1981年   10篇
  1980年   3篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   2篇
  1972年   4篇
  1971年   6篇
  1969年   3篇
排序方式: 共有608条查询结果,搜索用时 93 毫秒
51.
Groundwater is the most prioritized water source in India and plays an indispensable role in India's economy. The groundwater potential mapping is key to the sustainable groundwater development and management. A hybrid methodology is applied to delineate potential groundwater zones based on remote sensing, geographical information systems(GIS) and analytic hierarchy process(AHP) as on multicriteria decision making. For the purpose of demonstrating field application, Chittar watershed, Tamilnadu, India is studied as an example. The important morphological characteristics considered in the study are lithology, geomorphology, lineament density, drainage density, slope, and Soil Conservation Service–Curve Number(SCS-CN). These six thematic layers are generated in a GIS platform. Based on intersecting the layers, AHP method, the values for adopting the pairwise comparison normalized weight and normalized subclasses weightage were given. The normalized subclass weightage is input into each layer subclass. Then, weighted linear combination method is used to add the data layers in GIS platform to generate groundwater potential Index(GWPI) map. The GWPI map is validated based on the net recharge computed from the differences of measured groundwater levels between the pre-monsoon and post-monsoon in the year 2018. The kappa statistics are used to measure level spatial consistency between the GWPI and net recharge map. The overall average spatial matching accuracy between the two data sets is 0.86, while the kappa coefficient for GWPI with net recharge, 0.78. The results show that in Chittar watershed about 870 km~2 area is divided into high potential zone(i.e. sum of very high and high potential zone), 667 km~2 area, as the moderate one and the rest 105 km~2 area, as the poor zone(i.e. sum of very poor and poor potential zone).  相似文献   
52.
Dwivedi  Bhola  Mohan  Anita  Thomas  Roger 《Solar physics》1998,180(1-2):157-178
The EUV spectrum of a solar active region observed by SERTS-89 is used to estimate physical parameters such as electron density, elemental abundance and inhomogeneity in the emitting source. A total of 13 ions, namely, Neiv-vi, Mgv-ix, Sivii-x and Sx, are studied in the SERTS spectral range 170-450 Ú, providing plasma diagnostics at temperatures between105 –106 K. Attention is called to results derived from ion pairs of different elements that are formed over similar temperature regimes, which allow special checks on the standard assumptions of spectral analyses. Some EUV lines, not originally reported in the SERTS-89 spectrum, are shown to have measureable intensities and are indicated for future observations.  相似文献   
53.
An analytical form for the source function is formulated by comparing the fetch-limited approximation of the Ocean Wave Transport equation and the empirical equation for the fetch-dependent wave forecast nomograms. The source function thus generated has been utilised in the numerical model based on Toba’s formulation of wave transport equation and tested for the seas around the Indian subcontinent (5°S to 25°N latitude; 45°E to 100°E longitude). The grid averaged hindcast wave heights are found to be moderately matching with the GEOSAT altimeter measured significant wave heights of the 1987–1989 period, particularly for waves higher than 1 meter.  相似文献   
54.
The Chow-Kulandaiswamy general hydrologic system (GHS) model is revisited. Based on a mathematical study by Singh and McCann the GHS model is simplified. Explicit solutions are obtained for special cases which can satisfactorily determine watershed surface runoff response due to given rainfall excess. A rational criterion is developed to determine the number of derivative terms to be retained in the model. In order to determine the coefficients in the GHS model the method of moments is proposed. Criteria are developed to determine complex roots and oscillations for these coefficients. By analysing Chow-Kulandaiswamy's results it is found that in a majority of cases which they studied roots are complex. Moreover, for the cases which have complex roots, a majority of the solutions oscillate. A brief sensitivity analysis of the GHS model is performed with regard to: (a) its leading coefficient, and (b) the order of the differential equation. Finally, the peak characteristics are specified for the second order case and their qualitative properties are shown for the third order case.  相似文献   
55.
Heat flow values from some additional locations in the Cenozoic Cambay Basin have been determined. Together with the previously published data, they show that the heat flow is moderate (55–67 mW/m′) in the southern part of the basin towards Broach and Ankleswar, and that there is a clear trend of high heat flow (75–93 mW/m2; range of average values for six different, widely separated, locations) in a part of the basin located north of the Mahisagan river between Cambay and Mehsana along a stretch of about 140 km. Conductive steady state geotherms, calculated using observed high surface heat flow values and appropriate models show, beneath the Cambay-Mehsana area, a large degree of melting in the lower crust and upper mantle, which is not suggested by the existing geodata. Considering this aspect and taking into account the existence of a normal crust about 37 km thick below the Cambay-Tarapur and Ahmedabad-Mehsana blocks (as obtained from deep seismic soundings), it has been inferred that the heat flow anomaly is due to transient thermal perturbations introduced from tectonic activity in the form of magmatic intrusions. A careful analysis of heat flow, gravity and other related geodata point out and support the possibility of a Miocene/Pliocene basic intrusive body at a depth of around 10 km under the Cambay-Mehsana area. Further, the consistent trend of the thermal and gravity fields indicates thinning of the postulated intrusive body from Cambay towards Mehsana.  相似文献   
56.
LANDSAT-1 (ERTS-1) data of the complete scene, 1218-04320, covering an area 185 Km x 185 Km in the Godavari Valley, India was computer processed in the Computer Division of the Oil and Natural Gas Commissíon to produce an imagery of readily recognizable land forms. Comparison with the original maps supplied by NASA showed an amazing agreement in quality. Computer oriented data enhancement techniques were developed and the data was reprocessed with the help of these techniques. The resulting imagery reveal an improvement over the originals. The computer software package developed to-date comprises nine different programmes to process the LANDSAT data on the IBM 360, 370 series.  相似文献   
57.
This paper, the first of two, hypothesizes that: (1) the temporal variation of stream power of a river channel at a given station with varying discharge is accomplished by the temporal variation in channel form (flow depth and channel width) and hydraulic variables, including energy slope, flow velocity and friction; (2) the change in stream power is distributed among the changes in flow depth, channel width, flow velocity, slope, and friction, depending on the boundary conditions that the channels has to satisfy. The second hypothesis is a result of the principle of maximum entropy and the theory of minimum energy dissipation or its simplified minimum stream power. These two hypotheses lead to families of at‐a‐station hydraulic geometry relations. The conditions under which these families of relations can occur in the field are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
58.
A consistent approach to the frequency analysis of hydrologic data in arid and semiarid regions, i.e. the data series containing several zero values (e.g. monthly precipitation in dry seasons, annual peak flow discharges, etc.), requires using discontinuous probability distribution functions. Such an approach has received relatively limited attention. Along the lines of physically based models, the extensions of the Muskingum‐based models to three parameter forms are considered. Using 44 peak flow series from the USGS data bank, the fitting ability of four three‐parameter models was investigated: (1) the Dirac delta combined with Gamma distribution; (2) the Dirac delta combined with two‐parameter generalized Pareto distribution; (3) the Dirac delta combined with two‐parameter Weibull (DWe) distribution; (4) the kinematic diffusion with one additional parameter that controls the probability of the zero event (KD3). The goodness of fit of the models was assessed and compared both by evaluation of discrepancies between the results of both estimation methods (i.e. the method of moments (MOM) and the maximum likelihood method (MLM)) and using the log of likelihood function as a criterion. In most cases, the DWe distribution with MLM‐estimated parameters showed the best fit of all the three‐parameter models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
59.
60.
A method of seismic zonation based on the deterministic modeling of rupture planes is presented. Finite rupture planes along identified lineaments are modeled in the Uttarakhand Himalaya based on the semi empirical technique of Midorikawa (Tectonophysics 218:287–295, 1993). The expected peak ground acceleration thus estimated from this technique is divided into different zones similar to zones proposed by the Bureau of Indian standard, BIS (Indian standards code of practice for earthquake-resistant design of structures, 2002). The proposed technique has been applied to Kumaon Himalaya area and the surrounding region for earthquakes of magnitude M > 6.0. Approximately 56000 km2 study area is classified into the highest hazard zone V with peak accelerations of more than 400 cm/s2. This zone V includes the cities of the Dharchula, Almora, Nainital, Haridwar, Okhimath, Uttarkashi, Pithorahargh, Lohaghat, Munsiari, Rudraprayag, and Karnprayag. The Sobla and Gopeshwar regions belong to zone IV, where peak ground accelerations of the order from 250 to 400 cm/s2 can be expected. The prepared map shows that epicenters of many past earthquakes in this region lie in zone V, and hence indicating the utility of developed map in defining various seismic zones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号