首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   926篇
  免费   28篇
  国内免费   15篇
测绘学   18篇
大气科学   55篇
地球物理   221篇
地质学   347篇
海洋学   88篇
天文学   138篇
综合类   8篇
自然地理   94篇
  2022年   9篇
  2021年   12篇
  2020年   12篇
  2019年   21篇
  2018年   27篇
  2017年   27篇
  2016年   31篇
  2015年   22篇
  2014年   22篇
  2013年   47篇
  2012年   28篇
  2011年   47篇
  2010年   35篇
  2009年   32篇
  2008年   46篇
  2007年   34篇
  2006年   34篇
  2005年   38篇
  2004年   28篇
  2003年   23篇
  2002年   14篇
  2001年   21篇
  2000年   9篇
  1999年   13篇
  1998年   15篇
  1997年   11篇
  1996年   13篇
  1995年   12篇
  1994年   13篇
  1993年   9篇
  1992年   10篇
  1991年   7篇
  1989年   8篇
  1988年   7篇
  1987年   14篇
  1986年   8篇
  1985年   19篇
  1984年   14篇
  1983年   8篇
  1982年   11篇
  1981年   17篇
  1980年   9篇
  1979年   12篇
  1978年   13篇
  1977年   9篇
  1976年   12篇
  1974年   9篇
  1971年   10篇
  1969年   6篇
  1963年   7篇
排序方式: 共有969条查询结果,搜索用时 15 毫秒
141.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
142.
The Yucatán Peninsula, Mexico, has typically been considered a tectonically stable region with little significant seismic activity. The region though, is one that is regularly affected by hurricanes. A detailed survey of ca 100 km of the eastern Yucatán and Cozumel coast identified the presence of ridges containing individual boulders measuring >1 m in length. The boulder ridges reach 5 m in height and their origin is associated with extreme wave event activity. Previously modelled tsunami waves from known seismically active zones in the region (Muertos Thrust Belt and South Caribbean Deformed Belt) are not of sufficient scale in the area of the Yucatán Peninsula to have produced the boulder ridges recorded in this study. The occurrence of hurricanes in this region is more common, but two of the most destructive (Hurricane Gilbert 1988 and Hurricane Wilma 2005) produced coastal waves too small to have created the ridges recorded here. In this paper, a new tsunami model with a source area located on the Motagua/Swan Island Fault System has been generated that indicates a tsunami event may have caused the extreme wave events that resulted in the deposition of the boulder ridges.  相似文献   
143.
Unglazed soft-paste porcelain wasters from the Longton Hall factory site are variably depleted (75–80 rel %) in CaO relative to comparatively insoluble components (e.g., Al2O3, TiO2) due to the dissolution of wollastonite (CaSiO3, a pyroxenoid) by subsurface water. The degree of desilicification is variable (0–45 rel % SiO2). Petrographic data and element-abundance plots suggest that these were the principal effects of the chemical weathering process in most samples. The preferential dissolution of a single phase in the unglazed Longton Hall sherds permits the semiquantitative “reversal” of weathering phenomena. Alteration effects can be corrected using porosity–volume data to constrain the amount of wollastonite originally present in the weathered sherds. The original compositions of the unglazed wasters are bracketed by arithmetically “adding back” the missing pyroxenoid components according to two endmember assumptions concerning element mobility: (1) the total leaching of wollastonite components and (2) the preferential leaching of wollastonite-derived CaO. These calculations—particularly the latter—yield results that compare favourably with the compositions of relatively unaltered (wollastonite-bearing), glazed samples from the Longton Hall site. Given the potential susceptibility of archaeological ceramics to chemical weathering, it would seem prudent that these phenomena be carefully assessed, and corrected where possible, so that analytical data for these artifacts can be judiciously interpreted. © 1998 John Wiley & Sons, Inc.  相似文献   
144.
We propose a physical model for the high-frequency (>1 Hz) spectral distribution of seismic power generated by debris flows. The modeled debris flow is assumed to have four regions where the impact rate and impulses are controlled by different mechanisms: the flow body, a coarser-grained snout, a snout lip where particles fall from the snout on the bed, and a dilute front composed of saltating particles. We calculate the seismic power produced by this impact model in two end-member scenarios, a thin-flow and thick-flow limit, which assume that the ratio of grain sizes to flow thicknesses are either near unity or much less than unity. The thin-flow limit is more appropriate for boulder-rich flows that are most likely to generate large seismic signals. As a flow passes a seismic station, the rise phase of the seismic amplitude is generated primarily by the snout while the decay phase is generated first by the snout and then the main flow body. The lip and saltating front generate a negligible seismic signal. When ground properties are known, seismic power depends most strongly on both particle diameter and average flow speed cubed, and also depends on length and width of the flow. The effective particle diameter for producing seismic power is substantially higher than the median grain size and close to the 73rd percentile for a realistic grain size distribution. We discuss how the model can be used to estimate effective particle diameter and average flow speed from an integrated measure of seismic power. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
145.
Studia Geophysica et Geodaetica - Magnetovariation methods, which are applicable to study the mantle conductivity, require long lasting registration of natural magnetic field variations. Such data...  相似文献   
146.
A large quantity of organic carbon(C) is stored in northern and elevational permafrost regions. A portion of this large terrestrial organic C pool will be transferred by water into soil solution(~0.4 Pg C yr~(-1))(1 Pg=10~(15) g), rivers (~0.06 Pg C yr~(-1)),wetlands, lakes, and oceans. The lateral transport of dissolved organic carbon(DOC) is the primary pathway, impacting river biogeochemistry and ecosystems. However, climate warming will substantially alter the lateral C shifts in permafrost regions.Vegetation, permafrost, precipitation, soil humidity and temperature, and microbial activities, among many other environmental factors, will shift substantially under a warming climate. It remains uncertain as to what extent the lateral C cycle is responding,and will respond, to climate change. This paper reviews recent studies on terrestrial origins of DOC, biodegradability, transfer pathways, and modelling, and on how to forecast of DOC fluxes in permafrost regions under a warming climate, as well as the potential anthropogenic impacts on DOC in permafrost regions. It is concluded that:(1) surface organic layer, permafrost soils,and vegetation leachates are the main DOC sources, with about 4.72 Pg C DOC stored in the topsoil at depths of 0–1 m in permafrost regions;(2) in-stream DOC concentrations vary spatially and temporally to a relatively small extent (1–60 mg C L~(-1)) and annual export varies from 0.1–10 g C m~(-2) yr~(-1);(3) biodegradability of DOC from the thawing permafrost can be as high as 71%, with a median at 52%;(4) DOC flux is controlled by multiple factors, mainly including vegetation, soil properties,permafrost occurrence, river discharge and other related environmental factors, and(5) many statistical and process-based models have been developed, but model predictions are inconsistent with observational results largely dependent on the individual watershed characteristics and future discharge trends. Thus, it is still difficult to predict how future lateral C flux will respond to climate change, but changes in the DOC regimes in individual catchments can be predicted with a reasonable reliability. It is advised that sampling protocols and preservation and analysis methods should be standardized, and analytical techniques at molecular scales and numerical modeling on thermokarsting processes should be prioritized.  相似文献   
147.
148.
149.
Littlefield Springs discharge about 1.6 m3/s along a 10‐km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post‐1950s) seepage from the Virgin River. While corrected 14C apparent ages range from 1 to 9 ka, large amounts of nucleogenic 4He and low 3He/4He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high‐altitude recharge is supported by relatively cool noble‐gas recharge temperatures and isotopically depleted δ2H and δ18O. Excess (crustal) SF6 and 4He precluded dating of the modern component of water from Littlefield Springs using SF6 and 3H/3He methods. Assuming a lumped‐parameter model with a binary mixture of two piston‐flow components, Cl?/Br?, Cl?/F?, δ2H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30‐year groundwater travel time for Virgin River seepage to re‐emerge at Littlefield Springs. This suggests that removal of high‐salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号