首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   744篇
  免费   24篇
  国内免费   15篇
测绘学   17篇
大气科学   42篇
地球物理   169篇
地质学   293篇
海洋学   79篇
天文学   103篇
综合类   8篇
自然地理   72篇
  2023年   5篇
  2022年   9篇
  2021年   11篇
  2020年   12篇
  2019年   20篇
  2018年   23篇
  2017年   24篇
  2016年   30篇
  2015年   22篇
  2014年   22篇
  2013年   41篇
  2012年   27篇
  2011年   44篇
  2010年   30篇
  2009年   31篇
  2008年   45篇
  2007年   34篇
  2006年   29篇
  2005年   31篇
  2004年   24篇
  2003年   22篇
  2002年   12篇
  2001年   18篇
  2000年   6篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1994年   12篇
  1993年   7篇
  1992年   9篇
  1991年   5篇
  1989年   4篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   10篇
  1984年   9篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   8篇
  1976年   10篇
  1975年   4篇
  1974年   9篇
  1971年   6篇
  1969年   3篇
  1963年   4篇
排序方式: 共有783条查询结果,搜索用时 10 毫秒
351.
352.
The European Commission is supporting the real-time database for high-resolution neutron monitor measurements (NMDB) as an e-Infrastructures project in the Seventh Framework Programme in the Capacities section. The realization of the NMDB will provide the opportunity for several applications most of which will be implemented in real-time. An important application will be the establishment of an Alert signal when dangerous solar particle events are heading to the Earth, resulting into a ground level enhancement (GLE) registered by neutron monitors (NMs). The cosmic ray community has been occupied with the question of establishing such an Alert for many years and recently several groups succeeded in creating a proper algorithm capable of detecting space weather threats in an off-line mode. A lot of original work has been done to this direction and every group working in this field performed routine runs for all GLE cases, resulting into statistical analyses of GLE events. The next step was to make this algorithm as accurate as possible and most importantly, working in real-time. This was achieved when, during the last GLE observed so far, a real-time GLE Alert signal was produced. In this work, the steps of this procedure as well as the functionality of this algorithm for both the scientific community and users are being discussed. Nevertheless, the transition of the Alert algorithm to the NMDB is also being discussed.  相似文献   
353.
The lithospheric structure of the western part of the Mediterranean Sea is shown by means of S-velocity maps, for depths ranging from 0 to 35 km, determined from Rayleigh-wave analysis. The traces of 55 earthquakes, which occurred from 2001 to 2003 in and around the study area have been used to obtain Rayleigh-wave dispersion. These earthquakes were registered by 10 broadband stations located on Iberia and the Balearic Islands. The dispersion curves were obtained for periods between 1 and 45 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events were grouped in source zones to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and after inverted according to the generalized inversion theory, to obtain shear-wave velocity models for rectangular blocks with a size of 1° × 1°. The shear velocity structure obtained through this procedure is shown in the S-velocity maps plotted for several depths. These maps show the existence of lateral and vertical heterogeneity. In these maps is possible to distinguish several types of crust with an average S-wave velocity ranging from 2.6 to 3.9 km/s. The South Balearic Basin (SBB) is more characteristic of oceanic crust than the rest of the western Mediterranean region, as it is demonstrated by the crustal thickness. We also find a similar S-wave velocity (ranging from 2.6 km/s at the surface to 3.2 km/s at 10 km depth) for the Iberian Peninsula coast to Ibiza Island, the North Balearic Basin (NBB) and Mallorca Island. In the lower crust, the shear velocity reaches a value of 3.9 km/s. The base of the Moho is estimated from 15 to 20 km under Iberian Peninsula coast to Ibiza Island, continues towards NBB and increases to 20–25 km beneath Mallorca Island. While, the SBB is characterized by a thinner crust that ranges from 10 to 15 km, and a faster velocity. A gradual increase in velocity from the north to the south (especially in the upper 25 km) is obtained for the western part of the Mediterranean Sea. The base of the crust has a shear-wave velocity value around of 3.9 km/s for the western Mediterranean Sea area. This area is characterized by a thin crust in comparison with the crustal thickness of the eastern Mediterranean Sea area. This thin crust is related with the distensive tectonics that exists in this area. The low S-wave velocities obtained in the upper mantle might be an indication of a serpentinized mantle. The obtained results agree well with the geology and other geophysical results previously obtained. The shear velocity generally increases with depth for all paths analyzed in the study area.  相似文献   
354.
The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30 ± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.  相似文献   
355.
A survey of craters in the vicinity of Newton Basin, using high-resolution images from Mars Global Surveyor and Mars Odyssey, was conducted to find and analyze examples of gullies and arcuate ridges and assess their implications for impact crater degradation processes. In the Phaethontis Quadrangle (MC-24), we identified 225 craters that contain these features. Of these, 188 had gullies on some portion of their walls, 118 had arcuate ridges at the bases of the crater walls, and 104 contained both features, typically on the same crater wall. A major result is that the pole-facing or equator-facing orientation of these features is latitude dependent. At latitudes >44° S, equator-facing orientations for both ridges and gullies are prevalent, but at latitudes <44° S, pole-facing orientations are prevalent. The gullies and arcuate ridges typically occupy craters between ∼2 and 30 km in diameter, at elevations between −1 and 3 km. Mars Orbiter Laser Altimeter (MOLA) elevation profiles indicate that most craters with pole-facing arcuate ridges have floors sloping downward from the pole-facing wall, and some of these craters show asymmetry in crater rim heights, with lower pole-facing rims. These patterns suggest viscous flow of ice-rich materials preferentially away from gullied crater walls. Clear associations exist between gullies and arcuate ridges, including (a) geometric congruence between alcoves and sinuous arcs of arcuate ridges and (b) backfilling of arcuate ridges by debris aprons associated with gully systems. Chronologic studies suggest that gullied walls and patterned crater floor deposits have ages corresponding to the last few high obliquity cycles. Our data appear consistent with the hypothesis that these features are associated with periods of ice deposition and subsequent erosion associated with obliquity excursions within the last few tens of millions of years. Arcuate ridges may form from cycles of activity that also involve gully formation, and the ridges may be in part due to mass-wasted, ice-rich material transported downslope from the alcoves, which then interacts with previously emplaced floor deposits. Most observed gullies may be late-stage features in a degradational cycle that may have occurred many times on a given crater wall.  相似文献   
356.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   
357.
We show how the continuity equation can be used to determine pattern speeds in the Milky Way Galaxy (MWG). This method, first discussed by Tremaine & Weinberg in the context of external galaxies, requires projected positions, ( l , b ), and line-of-sight velocities for a spatially complete sample of relaxed tracers. If the local standard of rest (LSR) has a zero velocity in the radial direction ( u LSR), then the quantity that is measured is  Δ V ≡Ωp R 0- V LSR  , where Ωp is the pattern speed of the non-axisymmetric feature, R 0 is the distance of the Sun from the Galactic centre and V LSR is the tangential motion of the LSR, including the circular velocity. We use simple models to assess the reliability of the method for measuring a single, constant pattern speed of either a bar or spiral in the inner MWG. We then apply the method to the OH/IR stars in the ATCA/VLA OH 1612-MHz survey of Sevenster et al., finding  Δ V =252±41 km s-1,  if   u LSR=0  . Assuming further that   R 0=8 kpc  and   V LSR=220 km s-1,  this gives  Ωp=59±5 km s-1 kpc-1  with a possible systematic error of perhaps 10 km s−1 kpc−1. The non-axisymmetric feature for which we measure this pattern speed must be in the disc of the MWG.  相似文献   
358.
Anticipating and mitigating wave-related hazards rely heavily on understanding wave variability drivers. Here, we describe wave conditions related to concurrent Southern Annular Mode (SAM) and El Niño–Southern Oscillation (ENSO) phases during the austral summer. To identify such conditions, significant wave height (Hs) and peak wave period (Tp) daily anomalies were composited during different SAM–ENSO phase combinations over the last four decades (1979–2018). Surface wind anomalies were also composited to assist in the interpretation of wave conditions. The composites show significant wave variability across all ocean basins and in several semi-enclosed seas throughout the different SAM–ENSO phase combinations. The Southern, Indian, and Pacific Oceans generally experience the strongest Tp anomalies during combinations of SAM phases with El Niño, and the weakest Tp anomalies during combinations of SAM phases with La Niña. The anomalously large waves observed in the south-western Pacific, Tasman Sea, and the Southern Ocean, previously ascribed to ENSO conditions, seem to be instead associated with the SAM variability. SAM-related atmospheric conditions are found to be able to modulate the intensity of ENSO-related winds over the South China Sea, which, in turn, alter the magnitude of waves in that region. These and other wave anomaly structures described here, especially those contrasting the behaviour expected for a given ENSO phase, such as the one found along the California coast, stress the importance of understanding relationships between wave parameters and climate patterns interactions.  相似文献   
359.
Recent improvements to experiments and modelling of batch dissolution in a turbulent reactor, based upon the shrinking object model, are extended to middle loadings of gypsum, that is, in the region between low and high loadings, which lead, respectively, to high under-saturation or saturation with a great excess of solid left undissolved. Dissolved calcium sulphate concentration was monitored by change in electrical conductivity. This investigation uses an improved, ion-pair model for CaSO 4 0 to allow for the presence of calcium or sulphate added as common ions. The study demonstrates that the full dissolution curve for 5.82 mM loadings of 106-μm particles of gypsum (~1.00 g L?1) in de-ionised water barely changed in the presence of either 4.64 or 8.09 mM calcium chloride, or 4.39 mM sodium sulphate. However, this masked a doubling of dissolution rate imposed by comparable increases in ionic strength from sodium chloride. The results are consistent with the ion pair, CaSO 4 0 , being the key species in the rate-determining step of the back-reaction, and perhaps all salt dissolutions, including calcium carbonate. In this case, the rate equation is as follows: \( {\frac{{{\text{d}}c}}{{{\text{d}}t}}} = \frac{S}{V} \cdot (k_{1} - k_{2}^{\prime } \cdot [{\text{CaSO}}_{ 4}^{0} ]) \), where k 1 and k 2′ are rate constants. The reported observations are interpreted as effects of ionic strength and common ion concentrations upon the formation equilibrium for the ion pair. This rate equation readily transforms mathematically to one involving the product of [Ca2+] and [SO4 2?] in the back-reaction. The parallel of this with the well-known PWP equation used in calcium carbonate dissolution is discussed, with the CaHCO3 + ion pair of the equation being replaced by that of CaCO 3 0 . Meanwhile, the earlier use of the product, [Ca2+]½ × [CO3 2?]½, in the back-reaction term of another dissolution rate equation for calcite is shown to be incorrect. Finally, it is argued that the shrinking object model should be repositioned as a logical derivative of the hydrodynamical approach to dissolution.  相似文献   
360.
Recent work has emphasized that the empirical rate equation for batch dissolution of a solid consists of a forward term involving the surface area minus a back reaction term involving surface area and concentration of dissolved solid. Integrated forms exist for use at extremes of high under-saturation and of very heavy solid loadings which lead to saturation. A middle condition allows for significant decrease in solid supply and simultaneous arrival at saturation. This study tests the three approaches simultaneously to the batch dissolution of gypsum, thereby demonstrating a consistent applicability of the afore-mentioned rate equation. Previously, some mineral dissolutions have displayed so-called nonlinear kinetics and hence have not appeared to conform to this rate equation. This paper provides a template for future investigation of those situations; dissolution experiments are not easy to perform, and instances of the so-called nonlinear kinetics may represent experimental artefact. The relationship between this empirical approach and that of Transition State Theory used in mineral dissolution is discussed, and a new, linear proof for the applicability of the ‘middle ground’ equations is demonstrated. Stirring experiments highlight the difference between the conditions in fluidized bed and laminar flow reactors. Gypsum dissolution is found to be transport limited at all but very vigorous laboratory stirring conditions, although the relationship between the rate of shrinkage of gypsum particles and stirring seems to be relatively simple. A stirring factor is applied to the rate equation overall to allow for differences in reactor design, and it is suggested that this should also be applicable to laminar flow reactors. The link between batch and chemo-stat dissolutions is stressed, together with a need to contour dissolution data on a new graph of particle size versus stirring rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号