首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
大气科学   13篇
地球物理   8篇
地质学   20篇
海洋学   1篇
天文学   3篇
综合类   3篇
自然地理   5篇
  2021年   1篇
  2018年   5篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1988年   1篇
  1983年   1篇
  1980年   3篇
  1979年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有53条查询结果,搜索用时 93 毫秒
51.
The eclogite type locality in the Eastern Alps (the Koralpe and Saualpe region) is the largest region in the Eastern Alps that preserves high‐pressure metamorphic rocks from the Eo‐Alpine orogenic event of the Cretaceous age. Thermobarometric data from the metapelitic gneisses in the region indicate that a metamorphic field gradient across the region can be divided into three parts. The northern part shows continuously increasing PT from 10 ± 1.5 to 14 ± 1.5 kbar and 500 ± 68 to 700 ± 68 °C over a distance of 40 km. The continuous increase in PT indicates that no major tectonic boundaries were active in this part during the Eo‐Alpine orogeny. Small discontinuities in the pressure gradient of the northern part can be correlated with more localized deformation. The central part exposes amphibolite–eclogite facies rocks with 15 ± 1.5 kbar and 700 ± 68 °C over about 20 km length. The southern part shows decreasing P–T conditions from 15 ± 1.5 to 10 ± 1.5 kbar and 700 ± 68 to 600 ± 63 °C over a distance of 10 km beyond which conditions remain roughly constant for the remainder of the profile. Overall, the field gradient is characterized by: (i) an increase in age with decreasing metamorphic grade and (ii) a T/P ratio that is lower than common metamorphic geotherms. The age–grade relationship is consistent with the timing relationship along piezothermal arrays predicted by simple models for regional metamorphism. However, the T/P ratio of the field gradient is inconsistent with such an interpretation. These inconsistencies indicate that the profile is not simply an obliquely exposed crustal section. We suggest that the exhumation of the transect is best explained with a two dimensional model of an extruding wedge, as has recently been suggested as a typical scenario for other large scale compressional orogens.  相似文献   
52.
53.
Sediment trap studies and high frequency monitoring are of great importance to develop a deeper understanding of how seasonal environmental processes are imprinted in sediment signal formation. We collected whole year diatom assemblages from 2002 to 2014 with a sequential sediment trap from a varved boreal lake (Nylandssjön, Sweden) together with environmental and limnological parameters, and compared them with the corresponding diatom record of the annual laminated sediment. Our data set indicates a large year-to-year variability of diatom succession and abundance patterns, which is well reflected in the varved sediments. Specifically, Cyclotella glomerata dominated the annual sediment trap record (as well as in the corresponding sediment varves) in years with warmer air temperatures in March/April, and Asterionella formosa dominated the annual sediment assemblages as a consequence of years characterized by higher runoff before lake over-turn. Years succeeding forest clearance in the lake catchment showed marked increase in diatom and sediment flux. The DCA scores of the yearly diatom trap assemblages clearly resemble the lake’s thermal structure, which indicates that the relative abundance of major taxa seems primarily controlled by the timing of seasonal environmental events, such as above-average winter air temperature and/or autumn runoff and the current thermal structure of the lake. The high seasonal variability between environmental drivers in combination with the physical limnology leaves us with several possible scenarios leading to either an A. formosa versus C. glomerata dominated annual diatom sediment signal. With this study we highlight that short-term environmental events and seasonal limnological conditions are of major importance for interpreting annual sediment signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号