首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   9篇
  国内免费   2篇
测绘学   4篇
大气科学   17篇
地球物理   41篇
地质学   43篇
海洋学   17篇
天文学   34篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   13篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1997年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   4篇
  1979年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有170条查询结果,搜索用时 875 毫秒
121.
122.
¶rt;u m [4]; ¶rt;m ¶rt;nu mum uu uu 2- nu¶rt; u mmu n m.  相似文献   
123.
A regional ocean circulation model was used to project Baltic Sea climate at the end of the twenty-first century. A set of four scenario simulations was performed utilizing two global models and two forcing scenarios. To reduce model biases and to spin up future salinity the so-called Δ-change approach was applied. Using a regional coupled atmosphere–ocean model 30-year climatological monthly mean changes of atmospheric surface data and river discharge into the Baltic Sea were calculated from previously conducted time slice experiments. These changes were added to reconstructed atmospheric surface fields and runoff for the period 1903–1998. The total freshwater supply (runoff and net precipitation) is projected to increase between 0 and 21%. Due to increased westerlies in winter the annual mean wind speed will be between 2 and 13% larger compared to present climate. Both changes will cause a reduction of the average salinity of the Baltic Sea between 8 and 50%. Although salinity in the entire Baltic might be significantly lower at the end of the twenty-first century, deep water ventilation will very likely only slightly change. The largest change is projected for the secondary maximum of sea water age within the halocline. Further, the average temperature will increase between 1.9 and 3.2°C. The temperature response to atmospheric changes lags several months. Future annual maximum sea ice extent will decrease between 46 and 77% in accordance to earlier studies. However, in contrast to earlier results in the warmest scenario simulation one ice-free winter out of 96 seasons was found. Although wind speed changes are uniform, extreme sea levels may increase more than the mean sea level. In two out of four projections significant changes of 100-year surge heights were found.  相似文献   
124.
This paper presents the numerical simulation of a creeping slope in Upper Austria, using a visco-hypoplastic material law which describes the mechanical behavior of cohesive soils allowing for viscous effects, i.e. creep and relaxation. The method consists of: (1) determination of the parameters of the material law, based on laboratory tests on soil samples taken from the slope; (2) simulation of the laboratory tests with an element test program in which the used material law was implemented, in order to test whether the model holds for the soils studied; and (3) simulation of slope movements at different sections along the slope, assuming an infinite slope. The simulation results fit well with the field measurements. This demonstrates that despite strongly simplified boundary conditions and limited availability of subsurface data (e.g. density) the visco-hypoplastic law is a promising tool for predicting creep movements.  相似文献   
125.
Temporary local seismic networks were installed in western Crete, in central Crete, and on the island Gavdos south of western Crete, respectively, in order to image shallow seismically active zones of the Hellenic subduction zone.More than 4000 events in the magnitude range between −0.5 and 4.8 were detected and localized. The resulting three-dimensional hypocenter distribution allows the localization of seismically active zones in the area of western and central Crete from the Mediterranean Ridge to the Cretan Sea. Furthermore, a three-dimensional structural model of the studied region was compiled based on results of wide-angle seismics, surface wave analysis and receiver function studies. The comparison of the hypocenter distribution and the structure has allowed intraplate and interplate seismicity to be distinguished.High interplate seismicity along the interface between the subducting African lithosphere and the Aegean lithosphere was found south of western Crete where the interface is located at about 20 to 40 km depth. An offset between the southern border of the Aegean lithosphere and the southern border of active interplate seismicity is observed. In the area of Crete, the offset varies laterally along the Hellenic arc between about 50 and 70 km.A southwards dipping zone of high seismicity within the Aegean lithosphere is found south of central Crete in the region of the Ptolemy trench. It reaches from the interface between the plates at about 30 km depth towards the surface. In comparison, the Aegean lithosphere south of western Crete is seismically much less active including the region of the Ionian trench. Intraplate seismicity within the Aegean plate beneath Crete and north of Crete is confined to the upper about 20 km. Between 20 and 40 km depth beneath Crete, the Aegean lithosphere appears to be seismically inactive. In western Crete, the southern and western borders of this aseismic zone correlate strongly with the coastline of Crete.  相似文献   
126.
Zusammenfassung Die Arbeit gibt in 32 Karten eine Darstellung der Oberflächenströme. Die Karten 2–13 wurden nach der von H. Neumann [1960] veröffentlichten Arbeit gewonnen. Sie zeigen z. B. westlich Sylt sehr frühe, im Bereich der Elbmündung ungleichmäßige Eintrittszeiten (Karten 2–5), für die Richtungen des stärksten Stromes einen Bereich von 100° (Karten 6 und 7), im Bereich von Sylt kreisförmige, in der südlichen Deutschen Bucht alternierende Ströme (Karten 8 und 9) und Isolinien für die Geschwindigkeiten des stärksten Flut- und Ebbstromes, bezogen auf den Spring- und Nipptidenhub von Helgoland (Karten 10 bis 13). Auf den Karten 14 und 15 ist die Änderung der Höchstgeschwindigkeit bei einer Änderung des Tidenhubs von Helgoland um 1 m dargestellt. Besonders interessant sind die Karten 16 und 17, die für die Höchstgeschwindigkeit des Flut- und Ebbstroms das Verhältnis der Zunahmedauer zur Abnahmedauer des Stromes zeigen. Mit Annäherung an die flachen Gewässer wird z. B. die Zunahmedauer des Flutstromes im südöstlichen Teil der Deutschen Bucht nur halb so groß wie die Abnahmedauer, d. h. der Anstieg des Flutstroms ist im zeitlichen Verlauf wesentlich steiler als die Abnahme. Westlich Sylt und Amrum dauert dagegen die Zunahme des Flutstroms länger als die Abnahme (Drehströme). Karte 18 weist in Gebieten von auffällig langer Dauer des Ebbstroms auf Einflüsse von Restströmen hin. Auch auf den Karten 19 und 20 ist der Einfluß des abfließenden Elbwassers bei dem Verhältnis des stärksten Flutstromes zum stärksten Ebbstrom deutlich zu erkennen. Die letzten 13 Karten stellen Richtung und Geschwindigkeit des Stromes im stündlichen Abstand von 6 Stunden vor bis 6 Stunden nach dem Hochwasser von Helgoland für die Springzeit und die Nippzeit dar.
Surface currents in the German Bight
Summary On 32 maps a representation is given of the surface currents in the German Bight. The maps nos. 2 to 13 are based on the paper by H. Neumann [1960]. They show, for example, that in the west of Sylt the times of maximum velocity occur much earlier than elsewhere while in the area of the Elbe estuary considerable inequalities may be observed (maps 2 to 5). The difference in the directions of the maximum tidal streams amounts to 100°, as is shown on the maps 6 and 7. On maps 8 and 9 circular currents in the Sylt area and alternating currents in the southern part of the German Bight are represented. On the maps 10 to 13, lines of equal velocity are plotted showing the velocities of the strongest flood- and ebb streams referred to spring- and neap ranges around the isle of Heligoland. On the maps 14 and 15 the change of maximum velocity caused by the change of the tidal range by 1 m around Heligoland is represented. The maps 16 and 17 are of particular interest; they show the ratio of the duration of increase to the duration of decrease of the tidal stream with regard to the maximum velocity of the flood-and ebb streams. On approaching the shallow water region it is observed that the duration of the increase of the flood stream in the south-eastern part of the German Bight is only half as long as the duration of its decrease, viz. the increase of the flood stream is considerably steeper in the lapse of time than is its decrease. In the west of the isles of Sylt and Amrum the increase of the flood stream takes a longer time than its decrease (rotary tidal streams). Map 18 points to the presence of residual currents in areas with ebb streams of conspiciously long duration of decrease. Also on maps 19 and 20, the effect of the downstream flow of the Elbe river on the ratio of the strongest flood stream to the strongest ebb stream is clearly to be seen. The last 13 maps give a representation of the direction and the velocity of the tidal stream in hourly intervalls from 6 hours before to 6 hours after high water at the Isle of Heligoland at the time of springs and neaps.

Courants de surface dans la baie Allemande
Résumé Les courants de surface dans la baie allemande sont représentés sur 32 cartes. Les cartes 2 à 13 sont basées sur le travail de H. Neumann [1960]. Elles montrent que par exemple à l'ouest de Sylt les heures de l'entrée de la vitesse maximum se présentent plus tôt qu' à d'autres endroits tandis que dans la région de l'estuaire de l'Elbe on observe de sensibles inégalités (v. cartes 2 à 5). La différence de la direction du plus fort courant de marée s'élève à 100° (v. cartes 6 et 7). Sur les cartes 8 et 9 on a représenté les courants circulaires de la région de Sylt ainsi que les courants alternants de la partie sud de la baie Allemande. Les cartes 10 à 13 montrent des lignes d'égale vitesse du plus fort flot et du plus fort jusant; ces lignes se réfèrent aux amplitudes en vive eau et en morte eau auprès d'Helgoland. Les cartes 14 et 15 traitent la variation de la vitesse maximale due à la variation de l'amplitude par un mètre autour d'Helgoland. Les cartes 16 et 17 sont particulièrement intéressantes; elles représentent la durée de l'accroissement en raison de la durée de la diminution des courants de marée pour les vitesses maximales du flot et du jusant. Au voisinage des petits fonds on observe que la durée de l'accroissement du flot dans la partie sud-ouest de la baie Allemande est de la moitié si longue que la durée de sa diminution, c. a. d. l'accroissement du flot est beaucoup plus raide au cours du temps que sa diminution. A l'ouest de Sylt et d'Amrum, cependant, l'accroissement du flot dure plus longtemps que sa diminution (courants giratoirs de marée). La carte 18 annonce l'influence des courants résiduels dans les régions où la diminution des jusants s'étend sur un espace extraordinairement long de temps. Sur les cartes 19 et 20 on voit clairement l'effet que le courant d'aval de l'Elbe a sur le rapport du plus fort flot au plus fort jusant. Les dernières 13 cartes représentent la direction et la vitesse des courants de marée enregistrés d'heure en heure à partir de six heures avant jusqu'à 6 heures après la pleine mer auprès d'Helgoland à l'heure de la vive et de la morte eau.
  相似文献   
127.
Rh. germanica is a European species that, due to human impacts, has progressively disappeared from its original territories and is now considered rare. In SwitzerlandRh. germanica has disappeared from the Aare, Broye and Kleine Emme rivers and is actually found in a limited reach of the River Rhine and some of its tributaries (Limmat, Sihl, Thur and Töss rivers).Rh. germanica is a univoltine species, hatching probably in summer. The emergence occurs from February to the beginning of April. It takes place on the water surface. Laboratory observations have shown that the subimaginal stage lasts four days.Rh. germanica occurs on different substrate types, ranging from stones and cobbles to pebbles and gravel. The larvae are more abundant in zones of erosion with coarse and porous sediments than in depositional zones with fine sediments and silts. They are most abundant in riffles with water velocities from 20 to 150 cm/sec. The species tolerates moderately organic-polluted waters.The particular strategy concerning growth and emergence ofRh. germanica is also discussed.  相似文献   
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号