It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I &; Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for the Sculptor and Fornax dwarf spheroidal galaxies which have been previously had single element (low resolution) calcium abundance studies (Tolstoy et al., 2001). See Figures 1 and 2. 相似文献
Marine plants provide a variety of functions with high economic and ecological values in ecosystems. The above‐ (AG) and below‐ground (BG) systems increase the structural complexity of plants, which also enhance faunal abundance and diversity. The ecological role of the AG compartment in structuring inter‐tidal macrobenthic communities has been widely studied; however, this is not the case for the BG compartment. This study addressed the effects of variation in vegetation complexity (in both AG and BG systems) on associated macrobenthic infauna with respect to abundance, species richness, composition, weight and body type. To achieve this aim, a field experiment using artificial vegetation mimics was carried out using replicated treatments with different AG‐BG complexity ratios. We found a significant increase in the density and the number of taxa of macrobenthic infaunal species in plots with vegetation mimics compared with unvegetated areas, regardless of either AG or BG complexity. This effect was found even when AG parts were not present (i.e. when only BG parts were used). Furthermore, a positive relationship between structural complexity and diversity was recorded. Variation in one or both plant compartments was strongly related to diversity changes in the associated macrobenthic infauna. In conclusion, our experimental set‐up provides the first evidence that the BG compartment is at least as important as the AG compartment in controlling diversity in inter‐tidal vegetated areas because it was able to strongly affect community structure even when the AG system was totally absent. 相似文献
We present a homogeneous X-ray analysis of all 318 gamma-ray bursts detected by the X-ray telescope (XRT) on the Swift satellite up to 2008 July 23; this represents the largest sample of X-ray GRB data published to date. In Sections 2–3 , we detail the methods which the Swift -XRT team has developed to produce the enhanced positions, light curves, hardness ratios and spectra presented in this paper. Software using these methods continues to create such products for all new GRBs observed by the Swift -XRT. We also detail web-based tools allowing users to create these products for any object observed by the XRT, not just GRBs. In Sections 4–6 , we present the results of our analysis of GRBs, including probability distribution functions of the temporal and spectral properties of the sample. We demonstrate evidence for a consistent underlying behaviour which can produce a range of light-curve morphologies, and attempt to interpret this behaviour in the framework of external forward shock emission. We find several difficulties, in particular that reconciliation of our data with the forward shock model requires energy injection to continue for days to weeks. 相似文献
One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water
and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed,
which can be measured, and the Lagrangian time scale, TL, which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time
scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour
and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in south-eastern Australia. Modelled temperature
and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible
heat, water vapour and CO2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints:
(1) daytime eddy flux measurements of sensible heat, latent heat, and CO2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7
times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates
of TL, which are largely unconstrained by measurements. 相似文献
The Cenomanian–Turonian succession of southern Mexico is characterized by an abrupt change from shallow marine to pelagic facies. The drowning of the platform coincides with the widely documented Cenomanian–Turonian Oceanic Anoxic Event (CTOAE). A proper understanding of the drowning event and the effects of the OAE requires, as an essential first step, the construction of a detailed stratigraphic framework. This has been achieved and utilizes sedimentological data as well as a combination of benthic and planktonic biostratigraphic schemes.
Deposition of the Cenomanian–Turonian sedimentary rocks of the Guerrero–Morelos basin was controlled by tectonic and oceanographic factors resulting in depositional environments ranging from a semi-restricted shelf, ramp, pelagic and prodelta deposits. Facies analysis indicates that shallow marine limestones of the Morelos Formation (lower-upper Cenomanian) were deposited in intertidal–shallow supratidal and subtidal environments in a semi-restricted shelf. Peloidal-bioclastic packstone–wackestones with minor grainstones are the predominant texture of these rocks. Abundant large benthic foraminifers, calcareous algae (dasycladacean) and mollusks (gastropods and rudists) characterize the fossil assemblage.
The Cuautla Formation (uppermost Cenomanian–Turonian) represents sedimentation on a low-energy, wave-dominated, carbonate ramp. The inner ramp accumulated bioclastic banks and shoals composed of peloidal-benthic foraminifer-grainstone, calcareous red and green algae, rudists and minor solitary corals. The middle ramp is represented by nodular packstones with a diverse assemblage of echinoderms, green and red algae, bryozoan, rudists, solitary corals, roveacrinids, calcisphaerulids, and non-keeled planktonic foraminifers. The outer ramp is dominated by argillaceous wackestone–packstone characterized by calcisphaerulids, roveacrinids, and non-keeled planktonic foraminifers. An increase in terrigenous-clastic material towards the eastern part of the area indicates progradation of a deltaic system while the Mexcala Formation (uppermost Cenomanian–Turonian) was deposited in a pelagic setting.
The drowning of the platform is at the contact between the Morelos and Cuautla or Mexcala formations and is dated as latest Cenomanian. The drowning is a hiatus in most sections and it began before the end of the Cenomanian by a minimum of 150 ky if the top of the Morelos is not eroded. 相似文献
Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather than considering single issues, species, or ecosystem services in isolation. Marine spatial planning and ocean zoning are emerging concepts that can support EB-MSM. EB-MSM is driven by high-level goals that managers aim to achieve through the implementation of measures. High-level goals and objectives need to be translated into more operational objectives before specific targets, limits and measures can be elaborated.Monitoring, evaluation and adaptation are necessary to ensure that marine management measures are both effective and efficient. Solid monitoring frameworks are the foundation of adaptive management, as they provide the necessary information to evaluate performance and the effectiveness of management actions. Marine protected areas (MPAs) - possibly set up in networks - constitute a key component in EB-MSM policies and practises and have been applied as a cornerstone in conservation of marine biodiversity, management of fish populations, development of coastal tourism, etc. Moreover, MPA experiences have provided methods and concepts (such as zoning) to a wider EB-MSM context. The assignment of values to biophysical features of the marine environment allows the direct assessment of related management choices and may assist EB-MSM.A range of monetary valuation techniques have been proposed to reduce attributes of goods and services to a single metric. However, in the marine environment such an approach is often over simplistic, and thus less reductive techniques may be necessary. Rather than producing a single metric, the results of non-monetary assessments guide policy allowing weight to be given as necessary to potential areas of conflict and consensus.Strategies to take into account climate change effects and geohazard risks in EB-MSM have been applied or proposed worldwide. EB-MSM regimes must be alert to such risks and flexible to account for changes. 相似文献
The morphology and surface ages of talus-derived rock glaciers are investigated to establish the timing of rock glacier formation in the central Southern Alps. Samples of rock weathering rinds show that all rock glaciers studied were formed during the Neoglacial period, but differences exist between sites in the number of new rock glacier lobes formed by Holocene climatic fluctuations. A qualitative conceptual model is proposed to explain rock glacier formation in terms of two thresholds. An external threshold relates to the presence of a cool climate capable of allowing internal ice to form within talus slopes. An internal threshold relates to the presence of sufficiently thick talus at a site to generate a shear stress capable of overcoming internal friction within the talus/ice mass. The model produces a non-steady-state response to explain why unmodified talus, single-lobed and double-lobed rock glaciers developed at adjacent sites under the same climatic regime. Individual landforms have different sensitivities to formation, which depend partly on the previous history of talus accumulation and rock glacier activity at a site. The model demonstrates how successive cool climate periods may be fully represented by rock glacier lobes at sensitive sites but under-represented at insensitive sites. Sensitivity (and therefore climatic representativeness) is favoured by high rates of debris supply. By implication, the timing of formation of rock glacier lobes in regions of prolonged cool climate and low debris production is less likely to correspond to the timing of climatic cooling and more likely to follow the ‘rules’ of deterministic chaos. 相似文献
Abstract Mapping soil hydraulic parameters with traditional scaling methods that use laboratory-determined hydraulic characteristics (the LAB method) is not always feasible as it involves expensive, time-consuming and sophisticated measurements on soil samples collected in several locations of the study area. An alternative scaling method (the AP method) has been recently proposed to indirectly retrieve the soil hydraulic properties following the Arya-Paris physico-empirical pedotransfer function, which makes use of particle-size distribution and bulk density values. In this synthetic study we verify the performance of the AP method from a functional perspective, by evaluating the differences in the simulated soil water budget through a Monte Carlo approach. Notwithstanding that the AP method can provide soil hydraulic property patterns with faster experimental procedures and minor costs, we observe significant bias in the predicted spatially-averaged soil water budget due to a poor parametric calibration of the AP method and an imprecise identification of the spatial correlation structure of the AP-estimated scaling factors. Citation Nasta, P., Romano, N., and Chirico, G.B., 2013. Functional evaluation of a simplified scaling method for assessing the spatial variability of soil hydraulic properties at the hillslope scale. Hydrological Sciences Journal, 58 (5), 1059–1071. 相似文献
Shared Socioeconomic Pathways (SSPs) describe alternative outcomes for socioeconomic development. Papers describing the conceptual framework for SSPs refer to challenges to mitigation and to adaptation as fundamental concepts. Identifying which socioeconomic factors are the most important determinants of these challenges, and how to combine them in an internally consistent manner, is critical to scenario design. Here we demonstrate a systematic and traceable approach for identifying and prioritizing scenario elements. In this study, we identify 13 determinants of mitigation and adaptation challenges at a globally aggregated scale based on a survey of 25 experts. In addition, we use 19 expert elicitations and a cross-impact balance analysis to create approximately 1.5 million combinations of trends for these determinants and rank them in terms of internal consistency. Using the 1,000 most consistent combinations, we construct composite metrics for challenges to mitigation and adaptation to uncover distinguishable characteristics for five types of SSPs: those with Low, Medium, and High challenges to both mitigation and adaptation (consistent with SSPs 1–3), and those in which adaptation challenges or mitigation challenges dominate (consistent with SSPs 4–5). We find a distinguishing characteristic for mixed typology SSP4 (low mitigation challenges, high adaptation challenges): High trends for innovation capacity could lower challenges to mitigation but not necessarily challenges to adaptation. We also find that a low trend for quality of governance consistently corresponds to higher challenges to adaptation. These findings are suggestive for future research on the SSPs in particular, while our analytical approach is instructive for scenario development in general. 相似文献
This paper traces one craft brewery (Mill Street Brewery) across two industrial heritage properties—in Toronto’s Distillery District and Ottawa’s LeBreton Flats—to investigate the extent to which alcohol functions as a catalyst of urban change. Using an analysis of both planning and policy documents, as well as media coverage for the two properties, we explore the role that alcohol plays in recalibrating industrial landscapes into spaces of consumption, and the potential for craft breweries to alter the meanings of industrial heritage. We argue that craft beer works as a vehicle in the manufacture of new spaces of cultural consumption. Specifically, craft beer production and consumption are used to aestheticize the industrial past and pacify resistance to central-city gentrification. 相似文献