首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   15篇
  国内免费   3篇
测绘学   1篇
大气科学   18篇
地球物理   44篇
地质学   48篇
海洋学   29篇
天文学   23篇
综合类   2篇
自然地理   7篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   12篇
  2015年   11篇
  2014年   6篇
  2013年   12篇
  2012年   10篇
  2011年   7篇
  2010年   11篇
  2009年   14篇
  2008年   13篇
  2007年   7篇
  2006年   2篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1996年   2篇
  1991年   3篇
  1990年   1篇
  1981年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
171.
Glaciers around the world retreated as the climate warmed substantially. For the majority of alpine and arctic areas, however, the lack of meteorological data over a long period makes it difficult to build long-term climate and glacial fluctuation relationships, emphasizing the importance of natural proxy archives. Here we use the 230-year record of stem radial growth of birch trees (Betula ermanii) from the treeline forests above the receding glaciers in eastern maritime Kamchatka to analyse temporal variations of climate as well as glacial advance and retreat. Glaciers in Kamchatka Peninsula represent the southern limit of glaciation in far eastern Eurasia, which makes them prone to global warming. Using instrumental climate data (1930–1996) from local meteorological stations, we find that the July temperature had most prominent positive impact on birch growth. On the contrary, smaller ring increments are associated with the positive summer and net annual ice mass balance of Koryto Glacier. The prevailing trend of higher summer temperatures and lower snowfall over the past 70 years has enhanced tree growth while causing the glacier’s surface to lower by about 35 m and its front to retreat by about 490 m. Assuming these same relationships between climate, tree growth, and glacier mass balance also existed in the past, we use tree rings as a proxy record of climatically induced temporary halts in the glacier’s retreat over the past two centuries, which in total was over 1,000 m. Both direct observations and tree ring proxies indicate several prolonged warm periods (1990s, 1960s, 1930–1940s, 1880–1900s) interspersed with cooler periods (1984–1985, 1970–1976, 1953–1957, 1912–1926, 1855–1875, 1830–1845, 1805–1820 and 1770–1780) when the glacier re-advanced, creating several consecutive terminal moraine ridges. We conclude that birch tree-rings are suitable for assessing tree growth/climate/glacial relationships over a longer timescale in maritime Kamchatka.  相似文献   
172.
Many modern deltas show complex morphologies and architectures related to the interplay of river, wave and tidal currents. However, methods for extracting the signature of the individual processes from the stratigraphic architecture are poorly developed. Through an analysis of facies, palaeocurrents and stratigraphic stacking patterns in the Jurassic Lajas Formation, this paper: (i) separates the signals of wave, tide and river currents; (ii) illustrates the result of strong tidal reworking in the distal reaches of deltaic systems; and (iii) discusses the implications of this reworking for the evolution of mixed‐energy systems and their reservoir heterogeneities. The Lajas Formation, a sand‐rich, shallow‐marine, mixed‐energy deltaic system in the Neuquén Basin of Argentina, previously defined as a tide‐dominated system, presents an exceptional example of process variability at different scales. Tidal signals are predominantly located in the delta front, the subaqueous platform and the distributary channel deposits. Tidal currents vigorously reworked the delta front during transgressions, producing intensely cross‐stratified, sheet‐like, sandstone units. In the subaqueous platform, described for the first time in an ancient outcrop example, the tidal reworking was confined within subtidal channels. The intensive tidal reworking in the distal reaches of the regressive delta front could not have been predicted from knowledge of the coeval proximal reaches of the regressive delta front. The wave signals occur mainly in the shelf or shoreface deposits. The fluvial signals increase in abundance proximally but are always mixed with the other processes. The Lajas system is an unusual clean‐water (i.e. very little mud is present in the system), sand‐rich deltaic system, very different from the majority of mud‐rich, modern tide‐influenced examples. The sand‐rich character is a combination of source proximity, syndepositional tectonic activity and strong tidal‐current reworking, which produced amalgamated sandstone bodies in the delta‐front area, and a final stratigraphic record very different from the simple coarsening‐upward trends of river‐dominated and wave‐dominated delta fronts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号