首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   19篇
  国内免费   5篇
测绘学   23篇
大气科学   46篇
地球物理   91篇
地质学   209篇
海洋学   14篇
天文学   71篇
综合类   2篇
自然地理   36篇
  2023年   3篇
  2022年   5篇
  2021年   13篇
  2020年   6篇
  2019年   10篇
  2018年   16篇
  2017年   12篇
  2016年   16篇
  2015年   14篇
  2014年   14篇
  2013年   19篇
  2012年   19篇
  2011年   24篇
  2010年   25篇
  2009年   15篇
  2008年   21篇
  2007年   22篇
  2006年   12篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   13篇
  2001年   14篇
  2000年   11篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   4篇
  1993年   3篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1985年   5篇
  1983年   7篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1973年   7篇
  1971年   5篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1911年   2篇
排序方式: 共有492条查询结果,搜索用时 140 毫秒
161.
We discuss simultaneous visible-light and radio observations of a coronal transient that occurred on 9 April, 1980. Visible-light observations of the transient and the associated erupting prominence were available from the Coronagraph/Polarimeter carried aboard SMM, the P78-1 coronagraph, and from the Haleakala Observatory. Radio observations of the related type III-II-IV bursts were available from the Clark Lake and Culgoora Observatories. The transient was extremely complex; we suggest that an entire coronal arcade rather than just a single loop participated in the event. Type III burst sources observed at the beginning of the event were located along a nearby streamer, which was not disrupted, but was displaced by the outmoving loops. The type II burst showed large tangential motion, but unlike such sources usually do, it had no related herringbone structure. A moving type IV burst source can be associated with the most dense feature of the white-light transient.  相似文献   
162.
A fast coronal transient event was observed simultaneously on 17 February 1972 by the Sacramento Peak Observatory 6-in. λ 5303 filter coronagraph and the High Altitude Observatory K-coronameter. We interpret the rapid opening of green line structure cospatial with the disappearance of a white light streamer as material motion of iron ions and electrons. Together with the subsequent two-fold increase in K-corona brightness in an adjacent region, this is taken as evidence of a transference of electrons to a new streamer in a realignment of magnetic flux tubes accompanying a flare.  相似文献   
163.
164.

Garber Schlag (Q-GS) is one of the major springs of the Karwendel Mountains, Tyrol, Austria. This spring has a unique runoff pattern that is mainly controlled by the tectonic setting. The main aquifer is a moderately karstified and jointed limestone of the Wetterstein Formation that is underlain by nonkarstified limestone of the Reifling Formation, which acts as an aquitard. The aquifer and aquitard of the catchment of spring Q-GS form a large anticline that is bound by a major fault (aquitard) to the north. Discharge of this spring shows strong seasonal variations with three recharge origins, based on δ18O and electrical conductivity values. A clear seasonal trend is observed, caused by the continuously changing portions of water derived from snowmelt, rainfall and groundwater. At the onset of the snowmelt period in May, the discharge is composed mainly of groundwater. During the maximum snowmelt period, the water is dominantly composed of water derived from snowmelt and subordinately from rainfall. During July and August, water derived from snowmelt continuously decreases and water derived from rainfall increases. During September and October, the water released at the spring is mainly derived from groundwater and subordinately from rainfall. The distinct discharge plateau from August to December and the following recession until March is likely related to the large regional groundwater body in the fissured and moderately karstified aquifer of the Wetterstein Formation and the tectonic structures (anticline, major fault). Only a small portion of the water released at spring Q-GS is derived from permafrost.

  相似文献   
165.
Granular slides are omnipresent in both natural and industrial contexts. Scale effects are changes in physical behaviour of a phenomenon at different geometric scales, such as between a laboratory experiment and a corresponding larger event observed in nature. These scale effects can be significant and can render models of small size inaccurate by underpredicting key characteristics such as flow velocity or runout distance. Although scale effects are highly relevant to granular slides due to the multiplicity of length and time scales in the flow, they are currently not well understood. A laboratory setup under Froude similarity has been developed, allowing dry granular slides to be investigated at a variety of scales, with a channel width configurable between 0.25 and 1.00 m. Maximum estimated grain Reynolds numbers, which quantify whether the drag force between a particle and the surrounding air act in a turbulent or viscous manner, are found in the range 102???103. A discrete element method (DEM) simulation has also been developed, validated against an axisymmetric column collapse and a granular slide experiment of Hutter et al. (Acta Mech 109:127–165, 1995), before being used to model the present laboratory experiments and to examine a granular slide of significantly larger scale. This article discusses the details of this laboratory-numerical approach, with the main aim of examining scale effects related to the grain Reynolds number. Increasing dust formation with increasing scale may also exert influence on laboratory experiments. Overall, significant scale effects have been identified for characteristics such as flow velocity and runout distance in the physical experiments. While the numerical modelling shows good general agreement at the medium scale, it does not capture differences in behaviour seen at the smaller scale, highlighting the importance of physical models in capturing these scale effects.  相似文献   
166.
This study explores the potential of integrating state-of-the-art physically based hydrogeological modeling into slope stability simulations to identify the hydrogeological triggers of landslides. Hydrogeological models considering detailed morphological, lithological, and climatic factors were elaborated. Groundwater modeling reveals locations with elevated pore water pressures in the subsurface and allows the quantification of temporal dynamics of the pore water pressures. Results of the hydrogeological modeling were subsequently applied as boundary conditions for the slope stability simulations. The numerical models illustrate that the hydrogeological impacts affecting hillslope stability are strongly controlled by local groundwater flow conditions and their conceptualization approach in the hydrogeological model. Groundwater flow itself is heavily influenced by the inherent geological conditions and the dynamics of climatic forcing. Therefore, both detailed investigation of the landslide’s hydrogeology and appropriate conceptualization and scaling of hydrogeological settings in a numerical model are essential to avoid an underestimation of the landslide risk. The study demonstrates the large potential in combining state-of-the-art computational hydrology with slope stability modeling in real-world cases.  相似文献   
167.
Measurements of spectral emittance at wavelengths from 5 to 25 m were carried out for various particulate rocks and minerals (granite, calcite, talk) in dependence on particle size. The experimentally found variation of spectral features with particle size is discussed in terms of photon's mean free path and its dependence on particle size in the wavelength regions characterized by normal and anomalous dispersion, respectively. Moreover, a sample consisting of fine- and coarse-grained material was investigated in order to estimate the chance for mineral identification at conditions relevant to remote sensing of planetary objects. The mixture spectrum comprises characteristic features of both grain size fractions. This implies that the mineralogical composition of the fine-grained fraction also should be accessible by use of high-sensitive spectrometers.  相似文献   
168.
The chemical composition of fluid inclusions in quartz crystals from Alpine fissure veins was determined by combination of microthermometry, Raman spectroscopy, and LA-ICPMS analysis. The veins are hosted in carbonate-bearing, organic-rich, low-grade metamorphic metapelites of the Bündnerschiefer of the eastern Central Alps (Switzerland). This strongly deformed tectonic unit is interpreted as a partly subducted accretionary wedge, on the basis of widespread carpholite assemblages that were later overprinted by lower greenschist facies metamorphism. Veins and their host rocks from two locations were studied to compare several indicators for the conditions during metamorphism, including illite crystallinity, graphite thermometry, stability of mineral assemblages, chlorite thermometry, fluid inclusion solute thermometry, and fluid inclusion isochores. Fluid inclusions are aqueous two-phase with 3.7–4.0 wt% equivalent NaCl at Thusis and 1.6–1.7 wt% at Schiers. Reproducible concentrations of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Al, Mn, Cu, Zn, Pb, As, Sb, Cl, Br, and S could be determined for 97 fluid inclusion assemblages. Fluid and mineral geothermometry consistently indicate temperatures of 320 ± 20 °C for the host rocks at Thusis and of 250 ± 30 °C at Schiers. Combining fluid inclusion isochores with independent geothermometers results in pressure estimates of 2.8–3.8 kbar for Thusis, and of 3.3–3.4 kbar for Schiers. Pressure–temperature estimates are confirmed by pseudosection modeling. Fluid compositions and petrological modeling consistently demonstrate that chemical fluid-rock equilibrium was attained during vein formation, indicating that the fluids originated locally by metamorphic dehydration during near-isothermal decompression in a rock-buffered system.  相似文献   
169.
In order to perform a good pulse compression, the conventional spike deconvolution method requires that the wavelet is stationary. However, this requirement is never reached since the seismic wave always suffers high‐frequency attenuation and dispersion as it propagates in real materials. Due to this issue, the data need to pass through some kind of inverse‐Q filter. Most methods attempt to correct the attenuation effect by applying greater gains for high‐frequency components of the signal. The problem with this procedure is that it generally boosts high‐frequency noise. In order to deal with this problem, we present a new inversion method designed to estimate the reflectivity function in attenuating media. The key feature of the proposed method is the use of the least absolute error (L1 norm) to define both the data and model error in the objective functional. The L1 norm is more immune to noise when compared to the usual L2 one, especially when the data are contaminated by discrepant sample values. It also favours sparse reflectivity when used to define the model error in regularization of the inverse problem and also increases the resolution, since an efficient pulse compression is attained. Tests on synthetic and real data demonstrate the efficacy of the method in raising the resolution of the seismic signal without boosting its noise component.  相似文献   
170.
Erosion is responsible for environmental degradation in continental and coastal areas with varying degrees of intensity and spatial range. In continental areas, rills and gullies affect urban and non-urban areas and may occur isolated or in groups. In urban areas, many forms of degradation occur, ranging from relief modifications (with runoff and other hydrological changes) to channel and reservoir silting. Other forms of degradation include the destruction of infrastructure items, such as streets, power lines and pipelines. Many mechanical, structural, agricultural, ecological and bioengineering measures can be adopted to control and restore these areas, with various results. In many cases, the applied techniques are unsuccessful and worsen the environmental problems. To illustrate such cases in Brazil, this study examines the adoption of different techniques to restore gullies in the cities of São Pedro, Franca, São Carlos, Casa Branca and Cajuru, in the state of São Paulo. These areas are characterized by sandy geology in a variety of landscapes, and the erosion processes result from natural and anthropogenic conditions. Additionally, Brazil’s coastal area has been affected by erosion, as in Fortaleza (in the state of Ceará). This study demonstrates that the primary factor associated with erosion in coastal and continental urban areas is the lack of territorial planning that considers the geological, hydrological and geotechnical limitations. In some of the studied areas, positive results have been achieved. However, unsatisfactory results predominate primarily because appropriate geological, environmental and geotechnical studies were not performed before the interventions were selected and implemented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号