首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   9篇
  国内免费   1篇
测绘学   7篇
大气科学   33篇
地球物理   35篇
地质学   78篇
海洋学   9篇
天文学   9篇
自然地理   15篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   9篇
  2017年   12篇
  2016年   13篇
  2015年   7篇
  2014年   7篇
  2013年   15篇
  2012年   12篇
  2011年   16篇
  2010年   5篇
  2009年   20篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1992年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有186条查询结果,搜索用时 31 毫秒
161.
Neural networks are increasingly used in the field of hydrology due to their properties of parsimony and universal approximation with regard to nonlinear systems. Nevertheless, as a result of the existence of noise and approximations in hydrological data, which are very significant in some cases, such systems are particularly sensitive to increased model complexity. This dilemma is known in machine learning as bias–variance and can be avoided by suitable regularization methods. Following a presentation of the bias–variance dilemma along with regularization methods such as cross-validation, early stopping and weight decay, an application is provided for simulating and forecasting karst aquifer outflows at the Lez site. The efficiency of this regularization process is thus demonstrated on a nonlinear, partially unknown basin. As a last step, results are presented over the most intense rainfall event found in the database, which allows assessing the capability of neural networks to generalize with rare or extreme events.  相似文献   
162.
We sampled modern chironomids at multiple water depths in Lake Annecy, France, before reconstructing changes in chironomid assemblages at sub-decadal resolution in sediment cores spanning the last 150 years. The lake is a large, deep (zmax = 65 m), subalpine waterbody that has recently returned to an oligotrophic state. Comparison between the water-depth distributions of living chironomid larvae and subfossil head capsules (HC) along three surface-sediment transects indicated spatial differences in the influence of external forcings on HC deposition (e.g. tributary effects). The transect with the lowest littoral influence and the best-preserved, depth-specific chironomid community characteristics was used for paleolimnological reconstructions at various water depths. At the beginning of the twentieth century, oxygen-rich conditions prevailed in the lake, as inferred from M. contracta-type and Procladius sp. at deep-water sites (i.e. cores from 56 to 65 m) and Paracladius sp. and H. grimshawi-type in the core from 30 m depth. Over time, chironomid assemblages in cores from all three water depths converged toward the dominance of S. coracina-type, indicating enhanced hypoxia. The initial change in chironomid assemblages from the deep-water cores occurred in the 1930s, at the same time that an increase in lake trophic state is inferred from an increase in total organic carbon (TOC) concentration in the sediment. In the 1950s, an assemblage change in the core from 30 m water depth reflects the rapid expansion of the hypoxic layer into the shallower region of the lake. Lake Annecy recovered its oligotrophic state in the 1990s. Chironomid assemblages, however, still indicate hypoxic conditions, suggesting that modern chironomid assemblages in Lake Annecy are decoupled from the lake trophic state. Recent increases in both TOC and the hydrogen index indicate that changes in pelagic functioning have had a strong indirect influence on the composition of the chironomid assemblage. Finally, the dramatic decrease in HC accumulation rate over time suggests that hypoxic conditions are maintained through a feedback loop, wherein the accumulation of (un-consumed) organic matter and subsequent bacterial respiration prevent chironomid re-colonization. We recommend study of sediment cores from multiple water depths, as opposed to investigation of only a single core from the deepest part of the lake, to assess the details of past ecological changes in large deep lakes.  相似文献   
163.
We conducted a rearing experiment with the chironomid species Chironomus riparius to assess the relationship between the δ13C values of chironomid larvae and the δ13C values of their exuvial head capsules. Our experiment was also designed to study the extent of the trophic fractionation factor (Δ13C) under different dietary conditions. Three food sources were used (Tetramin, oats and corn), covering a range in δ13C values of 14.55 ‰. For each of the four successive instars, carbon isotope ratios were measured in larval tissues and head capsules. This approach highlighted the variability in δ13C for both larvae and their head capsules during larval development. Once the larvae reached the 3rd instar, their δ13C values were stabilised and did not significantly differ from their food δ13C (Δ13C = 0 ‰). It is probable that the variability in the δ13C offset during larval development reflected a difference in the carbon turnover for the chironomid cuticle compared with the whole body. At the 4th instar, the δ13C offset did not significantly differ between the three food sources and was ?0.9 ± 0.2 ‰. The proposed Δ13C and δ13C offset values can be considered as a first step for the reconstructions of the chironomid larvae paleo-diets with the aim of deciphering the different organic carbon sources supporting chironomid larvae productions. However, the influence of the environment (e.g. temperature, oxygen), other food sources (e.g. different nutritive values) as well as taxonomy (i.e. other chironomid species) should be assessed to strengthen the robustness of these results.  相似文献   
164.
Construction of an accurate theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of date, was started in Efroimsky and Goldreich (2004) and Efroimsky (2004, 2005, 2006a, b). Here we continue this line of research by combining that analytical machinery with numerical tools. Our model includes three factors: the J 2 of the planet, its nonuniform equinoctial precession described by the Colombo formalism, and the gravitational pull of the Sun. This semianalytical and seminumerical theory, based on the Lagrange planetary equations for the Keplerian elements, is then applied to Deimos on very long time scales (up to 1 billion years). In parallel with the said semianalytical theory for the Keplerian elements defined in the co-precessing equatorial frame, we have also carried out a completely independent, purely numerical, integration in a quasi-inertial Cartesian frame. The results agree to within fractions of a percent, thus demonstrating the applicability of our semianalytical model over long timescales. Another goal of this work was to make an independent check of whether the equinoctial-precession variations predicted for a rigid Mars by the Colombo model could have been sufficient to repel its moons away from the equator. An answer to this question, in combination with our knowledge of the current position of Phobos and Deimos, will help us to understand whether the Martian obliquity could have undergone the large changes ensuing from the said model (Ward 1973; Touma and Wisdom 1993, 1994; Laskar and Robutel 1993), or whether the changes ought to have been less intensive (Bills 2006; Paige et al. 2007). It has turned out that, for low initial inclinations, the orbit inclination reckoned from the precessing equator of date is subject only to small variations. This is an extension, to non-uniform equinoctial precession given by the Colombo model, of an old result obtained by Goldreich (1965) for the case of uniform precession and a low initial inclination. However, near-polar initial inclinations may exhibit considerable variations for up to ±10 deg in magnitude. This result is accentuated when the obliquity is large. Nevertheless, the analysis confirms that an oblate planet can, indeed, afford large variations of the equinoctial precession over hundreds of millions of years, without repelling its near-equatorial satellites away from the equator of date: the satellite inclination oscillates but does not show a secular increase. Nor does it show secular decrease, a fact that is relevant to the discussion of the possibility of high-inclination capture of Phobos and Deimos. We use the term “precession” in its general meaning, which includes any change of the instantaneous spin axis. So generally defined precession embraces the entire spectrum of spin-axis variations—from the polar wander and nutations through the Chandler wobble through the equinoctial precession.  相似文献   
165.
Observations of H2O maser sources at 1.35 cm associated with extended regions of 4.5-µm emission (indicated as “green” on Spitzer survey maps—so-called Extended Green Objects, EGOs) are reported. EGOs are considered as characteristic signposts of regions of formation of massive stars, which host high-velocity outflows, as well as methanol, water, and hydroxyl masers. The observations were carried out in January–May 2015 on the 22-meter radio telescope of the Pushchino Radio Astronomy Observatory. The sample studied includes 24 EGOs north of declination -29° taken from the Spitzer GLIMPSE survey, together with one of the brightest Class I methanol masers G6.05-1.45 (M8E) and the Class I methanol maser in an IRDC G359.94+0.17. H2O maser emission was detected toward 11 of the EGOs: G11.94-0.62, G14.33-0.64, G16.59-0.06, G23.01-0.41, G24.943+0.074, G28.83-0.25, G34.3+0.2, G34.403+0.233, G35.20-0.74, G45.47+0.07, and G49.267-0.337. These including the well known H2O maser in the W44 region, G34.3+0.2. H2O emission from G28.83-0.25 was detected for the first time, at 77.6 km/s, with a flux density of 19 Jy in January and 16 Jy in February 2015. The source was probably caught at an early stage of the propagation of a shock wave. The Class I methanol masers G359.94+0.17 and G6.05-1.45 (M8E) and 13 of the EGOs were not detected in the H2O line, with 3s upper limits of ~6-7 Jy. Spectra and maser-emission parameters are given for the detected H2Omasers, for some of which strong variability of the H2O maser emission was observed. The detected H2Omasers, together with the Class I methanol masers and extended 4.5-µm emission, are associated with a very early stage in the development of young stellar objects in the regions of the EGOs. However, this sample of EGOs is not uniform. The presence of 44-GHz Class I methanol masers together with EGOs cannot be considered the only sign of early stages of star formation.  相似文献   
166.
The spatiotemporal variability of the greenhouse gas methane(CH_4) in the atmosphere over the Amazon is studied using data from the space-borne measurements of the Atmospheric Infrared Sounder on board NASA's AQUA satellite for the period 2003–12. The results show a pronounced variability of this gas over the Amazon Basin lowlands region, where wetland areas occur. CH_4 has a well-defined seasonal behavior, with a progressive increase of its concentration during the dry season, followed by a decrease during the wet season. Concerning this variability, the present study indicates the important role of ENSO in modulating the variability of CH_4 emissions over the northern Amazon, where this association seems to be mostly linked to changes in flooded areas in response to ENSO-related precipitation changes. In this region, a CH_4 decrease(increase) is due to the El Nino-related(La Ni ?na-related) dryness(wetness). On the other hand, an increase(decrease) in the biomass burning over the southeastern Amazon during very dry(wet) years explains the increase(decrease) in CH_4 emissions in this region. The present analysis identifies the two main areas of the Amazon, its northern and southeastern sectors, with remarkable interannual variations of CH_4. This result might be useful for future monitoring of the variations in the concentration of CH_4, the second-most important greenhouse gas, in this area.  相似文献   
167.
Results of systematic observations of a sample of bright H2O maser sources with fluxes, on average, exceeding 200 Jy in their main spectral feature during April–September 2017 (G25.65+1.05, G25.825?0.178, G27.184?0.082, G34.403+0.233, G35.20?0.74, G43.8?0.13, G107.30+5.64) are presented. These observations were carried out in preparation for Very Long Baseline Interferometry observations with an array including the Crimean Astrophysical Observatory 22-m radio telescope. All these sources display fairly strong variability during the time interval considered, encompassing fluxes from ~40 to ~2300 Jy. A flare reaching ~17 000 Jy was detected at a velocity of 42.8 km/s in G25.65+1.05 on September 7, 2017, which subsequently grew to 60 000 Jy at the end of September 2017. This suggests the presence of compact maser structures. The velocities covered by various spectral components range from 5 to 20 km/s. In three sources (G25.65+1.05,G25.825?0.178,G35.20?0.74), a general growth in the fluxes of all the spectral features is observed, which may indicate variations in the conditions for pumping by an external source, for example, variations in the infrared flux from a central source or the passage of a shock. Possible evidence for the presence of bipolar outflows or disk structures in G25.65+1.05 is discussed.  相似文献   
168.
Results of new observations of the vicinity of DR 21 (OH) conducted on the 20-m Onsala radio telescope are presented. The goal was to search for associations between molecular hydrogen emission tracing shock waves and class I methanol maser emission. Observations at 44 and 36 GHz have shown that an extensive region of faint methanol maser emission elongated North-South is probably present in the vicinity of DR 21(OH). The linear size of this structure may be a factor of ten larger than the central region in DR 21(OH) that emits at 44 GHz. Three maser emission peaks are clearly visible in the northern (DR 21N), central (DR 21(OH)), and southern (vicinity of DR 21 West) parts of this structure. Many other structures are also embedded in this region, including the protostellar disk ERO 3 previously detected at 6.7 GHz. Maser components of these objects are formed with velocities from -5 to-2 km/s, with a velocity gradient from -5 in the North to -2 km/s in the South. The spatial resolution of the map is not high enough to distinguish fine structures at 44 GHz associated with spots and jets emitting in molecular hydrogen.  相似文献   
169.
Tropospheric distributions of ozone (O3) and water vapor (H2O) have been presented based on the Measurements of OZone and water vapor by Airbus In-Service AirCraft (MOZAIC) data over the metro and capital city of Delhi, India during 1996–2001. The vertical mixing ratios of both O3 and H2O show strong seasonal variations. The mixing ratios of O3 were often below 40 ppbv near the surface and higher values were observed in the free troposphere during the seasons of winter and spring. In the free troposphere, the high mixing ratio of O3 during the seasons of winter and spring are mainly due to the long-range transport of O3 and its precursors associated with the westerly-northwesterly circulation. In the lower and middle troposphere, the low mixing ratios of ∼20–30 ppbv observed during the months of July–September are mainly due to prevailing summer monsoon circulation over Indian subcontinent. The summer monsoon circulation, southwest (SW) wind flow, transports the O3-poor marine air from the Arabian Sea and Indian Ocean. The monthly averages of rainfall and mixing ratio of H2O show opposite seasonal cycles to that of O3 mixing ratio in the lower and middle troposphere. The change in the transport pattern also causes substantial seasonal variation in the mixing ratio of H2O of 3–27 g/kg in the lower troposphere over Delhi. Except for some small-scale anomalies, the similar annual patterns in the mixing ratios of O3 and H2O are repeated during the different years of 1996–2001. The case studies based on the profiles of O3, relative humidity (RH) and temperature show distinct features of vertical distribution over Delhi. The impacts of long range transport of air mass from Africa, the Middle East, Indian Ocean and intrusions of stratospheric O3 have also been demonstrated using the back trajectory model and remote sensing data for biomass burning and forest fire activities.  相似文献   
170.
The distribution of the radial velocities of class I methanol masers relative to the velocities of their parent molecular clouds is analyzed. This analysis is based on catalog data for methanol masers detected up to the present time in both the northern and southern hemispheres, together with catalog data for the CS(2-1) line, which traces dense, quiescent gas. Results for a large sample of sources show that, in contrast to class II methanol masers, which undergo Keplerian motions in protoplanetary disks, class I methanol masers retain their velocities in the local system of rest of the surrounding medium, and do not participate in the ejection of matter in bipolar outflows. They can be adequately described using a model in which matter ejected from active parts of the associated star-forming regions flows around isolated maser condensations. This compresses the maser clumps, enhancing the concentration of methanol and facilitating collisional pumping of the masers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号