首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   5篇
  国内免费   2篇
测绘学   24篇
大气科学   6篇
地球物理   29篇
地质学   42篇
海洋学   1篇
天文学   5篇
综合类   3篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   6篇
  2014年   9篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
41.
Conservation of wetland is considered paramount in view of its ecological significance. The availability of reliable and up-to-date data on seasonal water spread, tropic state of wetland and bio-physical parameters besides the landuse/cover of the catchment area is a prerequisite for ‘wise use’ of any wetland ecosystem. The present study is carried out to identify the above parameters of Loktak notified wetland through visual interpretation of 1RS IA/IB LISS II FCC of 1990 and 1994/95. It indicates that the water spread of the lake is showing a declining trend and an increasing trend for aquatic vegetation. In 1990 post-monsoon data water spread was 15441 ha which become 11166 ha in October 1994. The extent of water spread further decreases by pre-monsoon season and was found to be 7875 ha in the IRS LISS II data of March 1995. Like-wise area under aquatic vegetation and associated marshy/ swamps was 10499 ha in October 1990 and 13506 ha in October 1994. Catchment of Loktak lake (104872 ha) is highly degraded and forest covers only 7205 ha area. Agriculture is the main land use (35576 ha) in the catchment and substantial area is also under land with or without scrub. Thus, there is a need to rehabilitate the catchment by way of planting trees for reducing silt load in the Loktak lake and ensuring its ‘wise use’.  相似文献   
42.
43.
We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of  2.639 0157 ± 0.000 0016  d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses  (M1= 0.66 ± 0.03 M; M2= 0.62 ± 0.03 M)  and radii  (R1= 0.64 ± 0.08 R; R2= 0.61 ± 0.09 R)  of the components, which are consistent with empirical mass–radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of Hα emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys.  相似文献   
44.
Water is the most important natural resource which forms the core of the ecological system. The advent of remote sensing has opened up new vistas in groundwater prospect evaluation, exploration and management. The groundwater resources of the study area, Rishikesh region of Garhwal Himalayas, are under threat due to population pressure caused by expanding tourism in this region. This entails sustainable and judicious use of this precious resource. The groundwater prospect evaluation in Rishikesh region has been attempted based on hydrogeomorphological mapping of the area consisting of thematic maps of hydrogeomorphology, geology, drainage, lineament, slope and relief using high resolution IRS-1C LISS III and PAN merged satellite images. The Rishikesh region exhibits diverse hydrogeomorphological conditions where the groundwater regime is controlled mainly by topography and geology. A probability-weighted approach has been applied during overlay analysis in ArcMap GIS environment. The overlay analysis allows a linear combination of weights of each thematic map with respect to ground water potential. Good groundwater prospects dominate in the area with more than 50% of the study area showing moderate to excellent potential. The study shows that the remote sensing and geoinformatics techniques can be applied effectively for groundwater prospect evaluation.  相似文献   
45.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   
46.
47.
Hydrologic processes are complex, non-linear, and distributed within a watershed both spatially and temporally. One such complex pervasive process is soil erosion. This problem is usually approached directly by considering the sediment yield. Most of the hydrologic models developed and used earlier in sediment yield modeling were lumped and had no provision for including spatial and temporal variability of the terrain and climate attributes. This study investigates the suitability of a recent evolutionary technique, genetic programming (GP), in estimating sediment yield considering various meteorological and geographic features of a basin. The Arno River basin in Italy, which is prone to frequent floods, has been chosen as case study to demonstrate the GP approach. The results of the present study show that GP can efficiently capture the trend of sediment yield, even with a small set of data. The major advantage of the GP analysis is that it generates simple parsimonious expression offering some possible interpretations to the underlying process.  相似文献   
48.
Soil–water characteristic curve (SWCC) is one of the input components required for conducting the transient seepage analysis in unsaturated soil for estimating pore water pressure (PWP). SWCC is usually defined by saturated volumetric water content (θs), residual water content (RWC) and air entry value (AEV). Mathematical model of PWP could be useful to unearth the important SWCC components and the physics behind it. Based on authors’ knowledge, rarely any mathematical models describing the relationship between PWP and SWCC components are found. In the present work, an evolutionary approach, namely, multi-gene genetic programming (MGGP) has been applied to formulate the relationship between the PWP profile along soil depth and input variables for SWCC (θs, RWC and AEV) for a given duration of ponding. The PWP predicted using the MGGP model has been compared with those generated using finite element simulations. The results indicate that the MGGP model is able to extrapolate the PWP satisfactory along the soil depth for a given set of boundary conditions. Based on the given AEV and saturated water content, the PWP along the depth can be determined from the newly developed MGGP model, which will be useful for design and analysis of slopes and landfill covers.  相似文献   
49.
The Khetri Copper Belt is well known because of its economically viable Cu deposits. In this region, there is a linear narrow zone following a major crustal fracture. Along this zone, due to hydrothermal activity and subsequent alteration, a new rock, albitite has formed. The study presents an account of the spectral analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) dataset for albitite mapping in the Khetri Copper Belt. Spectral angle mapper algorithm is applied on the ASTER data taking the ground sample reflectance spectra (VNIR–SWIR) and image derived spectra (TIR) as reference spectra. The albitite-classified areas are analyzed spatially and statistically to determine the extent of albitite zone in the study area. This research is to contribute to the better understanding of the spatial extent of the albitite zone which will assist in determining the potential for the mineralization in the area. The remote sensing approach of utilizing multichannel data offers the capability to resolve the key geological features of this geologically dynamic area.  相似文献   
50.
Many of the continuous watershed models perform all their computations on a daily time step, yet they are often calibrated at an annual or monthly time-scale that may not guarantee good simulation performance on a daily time step. The major objective of this paper is to evaluate the impact of the calibration time-scale on model predictive ability. This study considered the Soil and Water Assessment Tool for the analyses, and it has been calibrated at two time-scales, viz. monthly and daily for the War Eagle Creek watershed in the USA. The results demonstrate that the model's performance at the smaller time-scale (such as daily) cannot be ensured by calibrating them at a larger time-scale (such as monthly). It is observed that, even though the calibrated model possesses satisfactory ‘goodness of fit’ statistics, the simulation residuals failed to confirm the assumption of their homoscedasticity and independence. The results imply that evaluation of models should be conducted considering their behavior in various aspects of simulation, such as predictive uncertainty, hydrograph characteristics, ability to preserve statistical properties of the historic flow series, etc. The study enlightens the scope for improving/developing effective autocalibration procedures at the daily time step for watershed models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号