首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37189篇
  免费   257篇
  国内免费   218篇
测绘学   721篇
大气科学   1705篇
地球物理   7056篇
地质学   14635篇
海洋学   3534篇
天文学   8796篇
综合类   99篇
自然地理   1118篇
  2022年   488篇
  2021年   709篇
  2020年   754篇
  2019年   826篇
  2018年   1696篇
  2017年   1545篇
  2016年   1639篇
  2015年   616篇
  2014年   1414篇
  2013年   2035篇
  2012年   1619篇
  2011年   1898篇
  2010年   1791篇
  2009年   1986篇
  2008年   1767篇
  2007年   1979篇
  2006年   1735篇
  2005年   900篇
  2004年   816篇
  2003年   809篇
  2002年   742篇
  2001年   764篇
  2000年   631篇
  1999年   418篇
  1998年   437篇
  1997年   474篇
  1996年   337篇
  1995年   359篇
  1994年   336篇
  1993年   281篇
  1992年   285篇
  1991年   291篇
  1990年   337篇
  1989年   272篇
  1988年   258篇
  1987年   263篇
  1986年   191篇
  1985年   301篇
  1984年   304篇
  1983年   297篇
  1982年   275篇
  1981年   249篇
  1980年   266篇
  1979年   204篇
  1978年   245篇
  1977年   204篇
  1976年   177篇
  1975年   185篇
  1974年   172篇
  1973年   207篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A survey of depression and uplift features on Europa, based on Galileo regional mapping images, shows that these features come in a wide range of sizes, with numbers increasing greatly with decreasing size, down to the limits of resolution. Size distributions are similar in the northern leading and southern trailing hemispheres, where they are distinctly different from the southern leading and northern trailing hemispheres, suggesting an oblique, antipodal symmetry pattern, similar to that of chaotic and tectonic terrain. This pattern is suggestive of polar wander. Uplifts are usually polygonal or irregular in shape and rarely are cracked. Patches of chaotic terrain, which we had surveyed earlier, are not included in the current study because their topography is generally unclear, and because there is no a priori known genetic linkage with the pits and uplifts.These results contradict generalizations based on the earlier “pits, spots, and domes” (PSD) taxonomy. Most of the type examples for PSDs were simply patches of chaotic terrain selected from a limited portion of their full size range. The use of the term lenticula to collectively describe PSDs is inconsistent with the IAU definition of lenticula: a small dark spot seen at low resolution. Pits and uplifts do not correlate with lenticulae, although chaos often does. Properties of PSDs that have been widely cited as primary evidence for convective upwelling in thick ice (e.g., that uplifts are generally dome-shaped and often cracked; that pits and domes are regularly spaced; that there is a typical diameter of ∼10 km) were premature and not supported by subsequent data. Most pits and uplifts are less than 10 km across so, if they formed by diapirism or convective upwelling, the sources must have been very shallow, less than 5 km deep. How they actually formed remains unknown.  相似文献   
992.
The D-CIXS Compact X-ray Spectrometer will provide high quality spectroscopic mapping of the Moon, the primary science target of the ESA SMART-1 mission. D-CIXS consists of a high throughput spectrometer, which will perform spatially localised X-ray fluorescence spectroscopy. It will also carry a solar monitor, to provide the direct calibration needed to produce a global map of absolute lunar elemental abundances, the first time this has been done. Thus it will achieve ground breaking science within a resource envelope far smaller than previously thought possible for this type of instrument, by exploiting two new technologies, swept charge devices and micro-structure collimators. The new technology does not require cold running, with its associated overheads to the spacecraft. At the same time it will demonstrate a radically novel approach to building a type of instrument essential for the BepiColombo mission and potential future planetary science targets.  相似文献   
993.
Io's neutral sodium emission cloud was monitored during the period of Voyager 1 encounter from two independent ground-based sites. Observations from Table Mountain Observatory verified the continued existence of the “near-Io cloud” (d < 1.5 × 105 km, for 4πI > 1 kR; R denotes Rayleigh) while those from Wise Observatory showed a deficiency in the weaker emission at greater distances from Io. The sodium cloud has been monitored from both observatories for several years. These and other observations demonstrate that the behavior of the cloud is complex since it undergoes a variety of changes, both systematic and secular, which can have both time and spatial dependencies. The cloud also displays some characteristics of stability. Table Mountain images and high-dispersion spectra (resolution ~0.2 A?) indicate that the basic shape and intensity of the “near cloud” have remained relatively constant at least since imaging observations began in 1976. Wise Observatory low-dispersion spectra (resolution ~1 A?) which have been obtained since 1974 demonstrate substantial variability of the size and intensity of the “far cloud” (d ? 1.5 × 105 km) on a time scale of months or less. Corresponding changes in the state of the plasma associated with the Io torus are suggested, with the period of Voyager 1 encounter represented as a time of unusually high plasma temperature and/or density. Dynamic models of the sodium cloud employing Voyager 1 plasma data provide a reasonable fit to the Table Mountain encounter images. The modeling assumptions of anisotropic ejection of neutral sodium atoms from the leading, inner hemisphere of Io with a velocity distribution characteristic of sputtering adequately explain the overall intensity distribution of the “near cloud”. During the Voyager 1 encounter period there appeared a region of enhanced intensity projecting outward from Io's orbit and inclined to the orbital plane. This region is clearly distinguished from the sodium emission normally aligned with the plane of Io's orbit. The process responsible for this phenomenon is not yet understood. Similar but less pronounced features are also present in several Table Mountain images obtained over the past few years.  相似文献   
994.
Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, we have modeled a past CO2H2O greenhouse and find global temperatures which are consistent with an earlier presence of liquid surface water, a finding which agrees with the extensive evidence for past fluvial erosion. An important aspect of the CO2H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294°K, but if the hot bands are excluded, a surface temperature of only 250°K is achieved.  相似文献   
995.
The POLAR 5 sounding rocket, launched from Andøya, Norway, on February 1, 1976, was of the “mother-daughter” configuration.A rocket-borne electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with a maximum current of 130 mA and electron energies up to 10 kev.Using a photometer the luminescence at 391.4nm produced by electrons colliding with ambient nitrogen molecules was studied. The observed light at 391.4 nm consisted of low background, with occasional flashes due to the natural auroral excitations, and intense sparkles when the electron beam was emitted.Below 130 km the light observed during beam injection can be explained by excitations of ambient N2 due to high energy beam electrons.In the altitude range from 150 km to apogee at 220 km, the observed light level during beam emission is fairly constant and much larger than that produced by the high energy beam electrons. A possible source of this light is the excitation of ambient N2 by an enhanced population of low energy electrons, created by the presence of a beam plasma discharge in the vicinity of the “daughter” payload.  相似文献   
996.
The Adams County, Colorado, H5 chondrite contains a lithic fragment, 1 cm in size, that is texturally and mineralogically quite different from the chondritic host. It is composed of: a groundmass of fine-grained euhedral to subhedral olivine (3–15 μm) and interstitial glass enclosing larger olivine and pyroxene grains (0.15-0.5 mm; about 15 vol %); an assemblage of enstatite grains (subfragment within) and an assemblage of olivine plus orthopyroxene (a second subfragment); and about 11 vol % grains of mixed troilite and nickel-iron metal. Analyses yielded these results: (i) olivine grains of the fragment groundmass have a compositional range (Fa12–45) and most grains contain substantial CaO and Cr2O3 (~ 0.20 and 0.30 avg. wt%, respectively); interstitial glass has ~ 55 wt% SiO2; (ii) larger olivine grains of the fragment are similarly high in CaO and Cr2O3 and also have a wide FeO/MgO range; one unusual pyroxene is an Mg-rich pigeonite; (iii) the metal is martensite in composition (11–14 wt% Ni); and (iv) major and trace element analyses by INAA indicate an H-group bulk composition for the entire 1 cm lithic fragment. On the basis of its texture and bulk and mineral compositions, the fragment is interpreted to represent unequilibrated H-group material that was partly melted by impact. The Ca- and Cr-enriched groundmass olivine and interstitial glass resulted from rapid crystallization of the chondritic melt. The Ca- and Cr-enriched larger silicate grains, including the enstatite sub-fragment and the pigeonite grain, are residual, unmelted clasts from the target material (this is supported by the presence of similar material in actual H3 chondrites). Further impact brecciation of the clast-laden melt material, and resultant impact-splashing accounts for the presence of the fragment in the H-group Adams County host and documents the coexistence of unequilibrated and equilibrated H-group material as surface regolith on one parent body.  相似文献   
997.
Based on the analysis of published data on exposure ages of iron meteorites determined with the 40K/K method (T K) and ages calculated using short-lived cosmogenic radionuclides (with the half-life T 1/2 < 1 Myr) in combination with stable cosmogenic isotopes of noble gases (TRS), the following results have been obtained. (1) The distribution of T RS ages (106 values) has an exponential shape, similar to that for ordinary chondrites, but different from the distribution of T K ages (80 values). The difference is most likely due to small amounts of data for meteorites with low T K ages (less than ~200–300 Myr). The latter can be ascribed to the difficulty of measurement of small concentrations of cosmogenic potassium isotopes. This circumstance makes the selection of meteorites with 40K/K ages nonrepresentative and casts doubt on the correctness of conclusions about the variations of the intensity of galactic cosmic rays (GCR) based on the analysis of distribution of these ages. (2) The magnitude of the known effect (systematic overestimation of T K ages in comparison with T RS ages) has been refined. The value k = T K/T RS = 1.51 ± 0.03 is acquired for the whole population of data. We have shown the inefficiency of the explanation of this effect on account of an exponential change in the GCR intensity (I T ) with time (T) according to the relation I T = I 0exp(–γT) over the whole range of ages of iron meteorites. (3) In order to explain the overestimation of T K ages in comparison with T RS ages, a model has been proposed, according to which the GCR intensity has exponentially increased in the interval of 0–1500 Myr governed by the relation: I T = I T = 1500 (1 + αexp(–βT)). For one of the variants of this model, the GCR intensity has exponentially increased by a factor of two only over the recent ~300 Myr, remaining approximately constant for the rest of the time. The data acquired with the use of this model indicate that the measured T K ages are close to the actual time that the meteorites existed in space; the data are in agreement with the observed exponential distribution of T RS ages.  相似文献   
998.
We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.  相似文献   
999.
The kinematics of the superfine structure of the active star-forming region in the dense molecular cloud Orion-KL has been investigated in the Н2О maser emission for the period 1998–2003. It has been established that the surrounding gas inflows onto the disk and is transferred in a spiral trajectory to the center. An excess angular momentum as it is accumulated is carried away by a bipolar outflow; a highvelocity central flow surrounded by low-velocity components is formed. The outer low-velocity component observed at the detection limit has a diameter Ø3 ≈ 4.5 AU, further out, Ø2 ≈ 0.5 AU and Ø1 ≈ 0.24 AU. The gas transfer velocity increases exponentially as the center is approached. The maser emission from the central flow is decisive. A rise in the velocity leads to a flow discontinuity and a reduction in the amount of inflowingmaterial and, accordingly, the emission level. The emission in the period under consideration was reduced exponentially for ~6 months, whereupon its restoration began.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号