首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38351篇
  免费   329篇
  国内免费   222篇
测绘学   781篇
大气科学   1799篇
地球物理   7301篇
地质学   15028篇
海洋学   3618篇
天文学   9035篇
综合类   103篇
自然地理   1237篇
  2022年   491篇
  2021年   716篇
  2020年   761篇
  2019年   837篇
  2018年   1724篇
  2017年   1572篇
  2016年   1664篇
  2015年   633篇
  2014年   1436篇
  2013年   2105篇
  2012年   1661篇
  2011年   1944篇
  2010年   1836篇
  2009年   2042篇
  2008年   1822篇
  2007年   2027篇
  2006年   1775篇
  2005年   940篇
  2004年   849篇
  2003年   845篇
  2002年   777篇
  2001年   786篇
  2000年   671篇
  1999年   439篇
  1998年   458篇
  1997年   493篇
  1996年   357篇
  1995年   379篇
  1994年   348篇
  1993年   303篇
  1992年   304篇
  1991年   304篇
  1990年   360篇
  1989年   288篇
  1988年   275篇
  1987年   277篇
  1986年   204篇
  1985年   315篇
  1984年   324篇
  1983年   320篇
  1982年   291篇
  1981年   263篇
  1980年   280篇
  1979年   210篇
  1978年   249篇
  1977年   214篇
  1976年   187篇
  1975年   195篇
  1974年   181篇
  1973年   215篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
791.
792.
Hurricane Frances is shown to greatly alter the hydrodynamics within Tampa Bay, Florida, and the exchange of water with the Gulf of Mexico in both observational data and a realistic numerical circulation model of the Tampa Bay estuary. Hurricane Frances hit Tampa Bay on September 5, 2004 with surface winds peaking twice near 22 m s−1. There were three stages to the hydrodynamic effect of Frances on Tampa Bay. The first stage included the approach of Frances up to the first wind peak. The winds were to the south and southeast. During this stage sea level was maintained below mean sea level (MSL) and the residual current (demeaned, detided) was weak. The second stage began as the winds turned to the east and northeast, as the eye passed near the bay, and ended as the second wind peak appeared. During this stage the residual currents were strongly positive (into the bay), raising sea level to 1.2 m above MSL at St. Petersburg. The measured residual circulation peaked at over +0.7 m s−1 near the surface. The model shows this velocity peak yielded a maximum volume flux into the bay of +44,227 m3 s−1, displacing a total volume of 1.5 billion m3 in just a few hours, about 42% of the bay volume. In the third stage a strong negative flow developed as the wind and sea level relaxed to near normal levels. The ADCP measured a peak outflow of −0.8 m s−1 during this time. Model results indicate a maximum flux of −37,575 m3 s−1, and that it took about 50 h to drain the extra volume driven into the bay by Hurricane Frances.  相似文献   
793.
794.
795.
796.
Coastal ecosystems are ecologically and commercially valuable, productive habitats that are experiencing escalating compromises of their structural and functional integrity. The Clean Water Act (USC 1972) requires identification of impaired water bodies and determination of the causes of impairment. Classification simplifies these determinations, because estuaries within a class are more likely to respond similarly to particular stressors. We reviewed existing classification systems for their applicability to grouping coastal marine and Great Lakes water bodies based on their responses to aquatic stressors, including nutrients, toxic substances, suspended sediments, habitat alteration, and combinations of stressors. Classification research historically addressed terrestrial and freshwater habitats rather than coastal habitats. Few efforts focused on stressor response, although many well-researched classification frameworks provide information pertinent to stressor response. Early coastal classifications relied on physical and hydrological properties, including geomorphology, general circulation patterns, and salinity. More recent classifications sort ecosystems into a few broad types and may integrate physical and biological factors. Among current efforts are those designed for conservation of sensitive habitats based on ecological processes that support patterns of biological diversity. Physical factors, including freshwater inflow, residence time, and flushing rates, affect sensitivity to stressors. Biological factors, such as primary production, grazing rates, and mineral cycling, also need to be considered in classification. We evaluate each existing classification system with respect to objectives, defining factors, extent of spatial and temporal applicability, existing sources of data, and relevance to aquatic stressors. We also consider classification methods in a generic sense and discuss their strengths and weaknesses for our purposes. Although few existing classifications are based on responses to stressors, may well-researched paradigms provide important information for improving our capabilities for classification, as an investigative and predictive management tool.  相似文献   
797.
798.
799.
800.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号