首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58271篇
  免费   702篇
  国内免费   511篇
测绘学   1375篇
大气科学   3298篇
地球物理   11222篇
地质学   21624篇
海洋学   5440篇
天文学   14085篇
综合类   141篇
自然地理   2299篇
  2022年   537篇
  2021年   836篇
  2020年   896篇
  2019年   1019篇
  2018年   2098篇
  2017年   1944篇
  2016年   2172篇
  2015年   968篇
  2014年   1925篇
  2013年   3107篇
  2012年   2215篇
  2011年   2716篇
  2010年   2539篇
  2009年   3012篇
  2008年   2670篇
  2007年   2855篇
  2006年   2638篇
  2005年   1627篇
  2004年   1554篇
  2003年   1478篇
  2002年   1381篇
  2001年   1295篇
  2000年   1199篇
  1999年   930篇
  1998年   928篇
  1997年   947篇
  1996年   706篇
  1995年   724篇
  1994年   712篇
  1993年   577篇
  1992年   573篇
  1991年   526篇
  1990年   617篇
  1989年   519篇
  1988年   490篇
  1987年   515篇
  1986年   413篇
  1985年   596篇
  1984年   620篇
  1983年   598篇
  1982年   564篇
  1981年   486篇
  1980年   508篇
  1979年   406篇
  1978年   433篇
  1977年   398篇
  1976年   343篇
  1975年   358篇
  1974年   338篇
  1973年   359篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
121.
The identification of syn- and late-orogenic flysch deposits, extending from the Betic Cordillera to the Southern Apennines, assists in the reconstruction of the tectonic-sedimentary evolution of the perimediterranean chains. A microplate was located between the European and African Plates during the Late Jurassic–Early Cretaceous, bordered northwards by the Piemontese Ocean and southwards by another (North Africa ‘Flysch’ Basin or Maghrebian) Ocean. The Piemontese Ocean and the northern margin of the microplate were structured from the Late Cretaceous to the Eocene to create an Eo-alpine Chain. The southern margin of the microplate was deformed in the Aquitanian, when the internal areas of the Maghrebian Ocean were characterized by syn-orogenic flysch deposits. This episode culminated with metamorphism (25–22 Ma) and nappe emplacement, which destroyed the former palaeogeography and created an orogenic belt (AlKaPeCa). Afterwards, a lower Burdigalian late-orogenic cycle started in the deformed area, which as a result of the opening of the Algero-Provençal Basin, caused the fragmentation of the AlKaPeCa, its thrusting on the ‘Flysch’ Basin and the collision with the North Africa and South Iberia Margins. These latter were folded and thrusted, the ‘Flysch’ Units pushed over the External Domain and also back-thrusted. Langhian late-orogenic deposits suture the new tectonic features. Finally, the whole orogen was thrust onto the foredeep during the Middle–Late Miocene.  相似文献   
122.
This paper considers the transient response of a pressurized long cylindrical cavity in an infinite poroelastic medium. To obtain transient solutions, Biot's equations for poroelastodynamics are specialized for this problem. A set of exact general solutions for radial displacement, stresses, pore pressure and discharge are derived in the Laplace transform space by using analytical techniques. Solutions are presented for three different types of prescribed transient radial pressures acting on the surface of a permeable as well as an impermeable cavity surface. Time domain solutions are obtained by inverting Laplace domain solutions using a reliable numerical scheme. A detailed parametric study is presented to illustrate the influence of poroelastic material parameters and hydraulic boundary conditions on the response of the medium. Comparisons are also presented with the corresponding ideal elastic solutions to portray the poroelastic effects. It is noted that the maximum radial displacement and hoop stress at the cavity surface are substantially higher than the classical static solutions and differ considerably from the transient elastic solutions. Time histories and radial variations of displacement, hoop stress, pore pressure and fluid discharge corresponding to a cavity in two representative poroelastic materials are also presented.  相似文献   
123.
We used satellite imagery and field data to investigate the south‐westernmost Baikal rift zone. We focus our study in the Mondy and Ikhe Ukhgun valleys, site of an Mw = 6.9 seismic event in 1950. Surface deformations are observed along the E–W‐trending Mondy strike‐slip fault and along the Ikhe Ukhgun thrust. The Mondy fault system is 80 km long and is composed of four segments 10–15 km long. These segments are characterized by subvertical planes with left‐lateral movements. The Ikhe Ukhgun thrust is 20 km long, dips 40° to the south and shows reverse movement with a left‐lateral component. These observations are consistent with the present‐day regional NNE–SSW compression and with the focal mechanism of the 1950 Mondy earthquake that was recently re‐evaluated. These features, like those observed in the Tunka basin, demonstrate a recent change of regional strain regime from transtension to transpression that we place before the Late Pleistocene.  相似文献   
124.
This paper presents arguments relating to the phenomenon of scantily populated regions with intergalactic obscuration.  相似文献   
125.
The study of the evolution of planetary systems, primarily of the Solar System, is one of the basic problems of celestial mechanics. The stability of motion of giant planets on cosmogonic time scales was established by numerical and analytical methods, but the question about the evolution of orbits of terrestrial planets and arbitrary solar-type planetary systems remained open. This work initiates a series of papers allowing one to advance in solving the problem of the evolution of the solar-type planetary systems on cosmogonic time scales by using powerful analytical tools. In the first paper of this series, we choose the optimum reference system and obtain the Poisson series expansion of the Hamiltonian of the problem in all Keplerian elements. We propose to use the integral representation of the corresponding coefficients or the Poisson processor means instead of conventionally addressing any possible special functions. This approach extremely simplifies the algorithm. The next paper of this series deals with the calculation of the expansion coefficients.  相似文献   
126.
The reflectance coefficient of the regolith layer of celestial bodies has been studied in relation to the physical properties of regolith particles (size, refractive index, and packing density) on the basis of an accurate numerical radiative-transfer algorithm for a semi-infinite flat layer. Using the geometric-optics approximation, we have found that a shape mixture of randomly oriented spheroids can successfully model the single-scattering phase function of independent soil grains. In order to take into account the effect of packing density in a regolith layer, the concept of the so-called static structure factor was used. The main effect of increasing packing density is to suppress the forward-scattering peak of the phase function and to increase the albedo of the reflecting surface. We also investigated the influence of fine dust on the reflected light. An addition of small particles not only increases the surface albedo, but also changes the brightness profile and enhances the backscattering. Although the problem of unique solution, which is inherent in the retrieval of the properties of a medium from the measurements of the intensity of light scattered by this media, cannot be removed in the proposed model, the procedure used here, in contrast to widely used approximations, allows us to fit observational data with a set of real characteristics of the regolith. Semiempirical approaches are able to fit the measurements well with a small number of free parameters, but they do not explicitly contain crucial physical characteristics of the regolith such as grain sizes or the refractive index. We compared the numerical solution of the radiative-transfer equation with the Hapke approximation, which is most often used by investigators. The errors introduced by the Hapke model are small only for near-isotropic scattering by isolated particles. However, independent regolith grains are known to scatter light mainly in the forward direction.  相似文献   
127.
Crifo  J.-F.  Rodionov  A. V.  Szegö  K.  Fulle  M. 《Earth, Moon, and Planets》2002,90(1-4):227-238
We briefly describe an advanced 3D gas dynamical model developed for the simulation of theenvironment of active cometary nuclei. The model canhandle realistic nucleus shapes and alternative physical models for the gas and dust production mechanism.The inner gas coma structure is computed by solving self-consistently(a) near to the surface the Boltzman Equation(b) outside of it, Euler or Navier-Stokes equations.The dust distribution is computed from multifluid ``zero-temperature' Euler equations,extrapolated with the help of a Keplerian fountain model.The evolution of the coma during the nucleus orbital and spin motion,is computed as a succession of quasi-steady solutions. Earlier versions of the model using simple,``paedagogic' nuclei have demonstrated that the surface orographyand the surface inhomogeneity contribute similarly to structuring the near-nucleusgas and dust coma,casting a shadow on the automatic attribution of such structures to ``active areas'.The model was recently applied to comet P/Halley, for whichthe nucleus shape is available. In the companion paper of this volume,we show that most near-nucleus dust structuresobserved during the 1986 Halley flybys are reproduced, assuming that the nucleus is strictly homogeneous. Here, we investigate the effect of shape perturbations and homogeneityperturbations. We show that the near nucleus gas coma structure is robust vis-a-vissuch effects. In particular, a random distribution of active and inactive areaswould not affect considerably this structure, suggesting that such areas,even if present, could not be easily identified on images of the coma.  相似文献   
128.
Abstract Large calcite veins and pods in the Proterozoic Corella Formation of the Mount Isa Inlier provide evidence for kilometre-scale fluid transport during amphibolite facies metamorphism. These 10- to 100-m-scale podiform veins and their surrounding alteration zones have similar oxygen and carbon isotopic ratios throughout the 200 × 10-km Mary Kathleen Fold Belt, despite the isotopic heterogeneity of the surrounding wallrocks. The fluids that formed the pods and veins were not in isotopic equilibrium with the immediately adjacent rocks. The pods have δ13Ccalcite values of –2 to –7% and δ18Ocalcite values of 10.5 to 12.5%. Away from the pods, metadolerite wallrocks have δ18Owhole-rock values of 3.5 to 7%. and unaltered banded calc-silicate and marble wallrocks have δ13Ccalcite of –1.6 to –0.6%, and δ18Ocalcite of 18 to 21%. In the alteration zones adjacent to the pods, the δ18O values of both metadolerite and calc-silicate rocks approach those of the pods. Large calcite pods hosted entirely in calc-silicates show little difference in isotopic composition from pods hosted entirely in metadolerite. Thus, 100- to 500-m-scale isotopic exchange with the surrounding metadolerites and calc-silicates does not explain the observation that the δ18O values of the pods are intermediate between these two rock types. Pods hosted in felsic metavolcanics and metasiltstones are also isotopically indistinguishable from those hosted in the dominant metadolerites and calc-silicates. These data suggest the veins are the product of infiltration of isotopically homogeneous fluids that were not derived from within the Corella Formation at the presently exposed crustal level, although some of the spread in the data may be due to a relatively small contribution from devolatilization reactions in the calc-silicates, or thermal fluctuations attending deformation and metamorphism. The overall L-shaped trend of the data on plots of δ13C vs. δ18O is most consistent with mixing of large volumes of externally derived fluids with small volumes of locally derived fluid produced by devolatilization of calc-silicate rocks. Localization of the vein systems in dilatant sites around metadolerite/calc-silicate boundaries indicates a strong structural control on fluid flow, and the stable isotope data suggest fluid migration must have occurred at scales greater than at least 1 km. The ultimate source for the external fluid is uncertain, but is probably fluid released from crystallizing melts derived from the lower crust or upper mantle. Intrusion of magmas below the exposed crustal level would also explain the high geothermal gradient calculated for the regional metamorphism.  相似文献   
129.
The historic era, which in Cumbria begins with the Roman invasion of AD 71, is a frequently neglected period in palaeoecological research, but its study can bring benefits in improving knowledge of landscape history and in understanding the significance and limitations of palaeoecological records. Pollen and geochemical data are presented for late Holocene records from Deer Dyke and Hulleter Mosses in southern Cumbria. The records show initially low levels of anthropogenic impact, followed by a phase of forest clearance and mixed agriculture from the 7th to 11th centuries AD. The timing of these clearances suggests that they were initially Anglo‐Saxon in origin, rather than Norse. Further clearances in the 16th century AD are interpreted as a response to monastic dissolution and late Tudor population pressures; the landscapes reached their contemporary form following extensive clearances in the 17th century AD. Silicon and titanium concentrations at Deer Dyke Moss were used to reconstruct past levels of atmospheric dust loading, which is broadly related to soil erosion. Geochemical influx was found to peak during periods of landscape transition rather than from established land use. This relationship with pollen data is thought to reflect the predominantly low levels of anthropogenic impact in the region, which changes as substantial woodland clearances during the 16th century AD and continuous land use pressure since then have greatly increased the supply of airborne dust. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
130.
A pollen‐based study from Tiny Lake in the Seymour‐Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740 ± 70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860 ± 50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour‐Belize Inlet Complex, on a meso‐ to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour‐Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi‐permanent air mass. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号