首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   21篇
  国内免费   5篇
测绘学   7篇
大气科学   32篇
地球物理   71篇
地质学   103篇
海洋学   11篇
天文学   86篇
综合类   3篇
自然地理   6篇
  2023年   2篇
  2021年   3篇
  2020年   4篇
  2019年   11篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   8篇
  2014年   15篇
  2013年   15篇
  2012年   15篇
  2011年   20篇
  2010年   24篇
  2009年   16篇
  2008年   13篇
  2007年   12篇
  2006年   9篇
  2005年   10篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   8篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   3篇
  1990年   4篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1968年   2篇
  1967年   1篇
  1965年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
261.
262.
The application of stationary parameters in conceptual hydrological models, even under changing boundary conditions, is a common yet unproven practice. This study investigates the impact of non‐stationary model parameters on model performance for different flow indices and time scales. Therefore, a Self‐Organizing Map based optimization approach, which links non‐stationary model parameters with climate indices, is presented and tested on seven meso‐scale catchments in northern Germany. The algorithm automatically groups sub‐periods with similar climate characteristics and allocates them to similar model parameter sets. The climate indices used for the classification of sub‐periods are based on (a) yearly means and (b) a moving average over the previous 61 days. Classification b supports the estimation of continuous non‐stationary parameters. The results show that (i) non‐stationary model parameters can improve the performance of hydrological models with an acceptable growth in parameter uncertainty; (ii) some model parameters are highly correlated to some climate indices; (iii) the model performance improves more for monthly means than yearly means; and (iv) in general low to medium flows improve more than high flows. It was further shown how the gained knowledge can be used to identify insufficiencies in the model structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
263.
Soil water content is a key variable for biogeochemical and atmospheric coupled processes. Its small‐scale heterogeneity impacts the partitioning of precipitation (e.g., deep percolation or transpiration) by triggering threshold processes and connecting flow paths. Forest hydrologists frequently hypothesized that throughfall and stemflow patterns induce soil water content heterogeneity, yet experimental validation is limited. Here, we pursued a pattern‐oriented approach to explore the relationship between net precipitation and soil water content. Both were measured in independent high‐resolution stratified random designs on a 1‐ha temperate mixed beech forest plot in Germany. We recorded throughfall (350 locations) and stemflow (65 trees) for 16 precipitation events in 2015. Soil water content was measured continuously in topsoil and subsoil (210 profiles). Soil wetting was only weakly related to net precipitation patterns. The precipitation‐induced pattern quickly dissipates and returns to a basic pattern, which is temporally stable. Instead, soil hydraulic properties (by the proxy of field capacity) were significantly correlated with this stable soil water content pattern, indicating that soil structure more than net precipitation drives soil water content heterogeneity. Also, both field capacity and soil water content were lower in the immediate vicinity of tree stems compared to further away at all times, including winter, despite stemflow occurrence. Thus, soil structure varies systematically according to vegetation in our site. We conclude that enhanced macroporosity increases gravity‐driven flow in stem proximal areas. Therefore, although soil water content patterns are little affected by net precipitation, the resulting soil water fluxes may strongly be affected. Specifically, this may further enhance the channelling of stemflow to greater depth and beyond the rooting zone.  相似文献   
264.
Little is known about the Hadean and the Archean impact record on Earth. In the CT3 drill core from the Fig Tree Group of the northern Barberton Greenstone Belt, 17 spherule layer intersections occur, which, provide an outstanding new opportunity to gain insights into meteorite bombardment of the early Earth. CT3 spherules, as primary features, mostly exhibit textural patterns similar to those of the other Barberton spherule layers, but locally mineralogical and chemical compositional differences are observed, likely as a result of various degrees of alteration. The observed mineralogy of the spherule layers is of secondary origin and comprises K‐feldspar, phyllosilicates, carbonates, sulfides, and oxides, with the exception of secondary Ni‐Cr spinel that is of primary origin. Our petrographic investigations suggest alteration by K‐metasomatism, sericitization, silicification, and carbonatization. Siderophile element contents of bulk samples show significant enrichments in Ni (up to 2 wt%) and Ir (up to ~3 ppm), similar to previously studied Archean spherule layers. These values are indicative of the presence of a meteoritic component. On the other hand, lithophile and chalcophile element abundances indicate hydrothermal overprint on the CT3 samples; this may also have influenced the redistribution of the meteoritic component(s). Last, we group the CT3 spherule layers, which occur in three intervals (A, B, and C), according to their petrographic and geochemical features, which indicate evidence for at least three distinct impact events before tectonic overprint that affected the original deposits.  相似文献   
265.
266.
SAR stereo image analysis for 3D information extraction is mostly carried out based on imagery taken under same-side or opposite-side viewing conditions. For urban scenes in practice stereo is up to now usually restricted to the first configuration, because increasing image dissimilarity connected with rising illumination direction differences leads to a lack of suitable features for matching, especially in the case of low or medium resolution data. However, due to two developments SAR stereo from arbitrary viewing conditions becomes an interesting option for urban information extraction. The first one is the availability of airborne sensor systems, which are capable of more flexible data acquisition in comparison to satellite sensors. This flexibility enables multi-aspect analysis of objects in built-up areas for various kinds of purpose, such as building recognition, road network extraction, or traffic monitoring. The second development is the significant improvement of the geometric resolution providing a high level of detail especially of roof features, which can be observed from a wide span of viewpoints. In this paper, high-resolution SAR images of an urban scene are analyzed in order to infer buildings and their height from the different layover effects in views taken from orthogonal aspect angles. High level object matching is proposed that relies on symbolic data, representing suitable features of urban objects. Here, a knowledge-based approach is applied, which is realized by a production system that codes a set of suitable principles of perceptual grouping in its production rules. The images are analyzed separately for the presence of certain object groups and their characteristics frequently appearing on buildings, such as salient rows of point targets, rectangular structures or symmetries. The stereo analysis is then accomplished by means of productions that combine and match these 2D image objects and infer their height by 3D clustering. The approach is tested using real SAR data of an urban scene.  相似文献   
267.
Knowledge on groundwater–surface water interaction and especially on exchange fluxes between streams and aquifers is an important prerequisite for the study of transport and fate of contaminants and nutrients in the hyporheic zone. One possibility to quantify groundwater–surface water exchange fluxes is by using heat as an environmlental tracer. Modern field equipment including multilevel temperature sticks and the novel open‐source analysis tool LPML make this technique ever more attractive. The recently developed LPML method solves the one‐dimensional fluid flow and heat transport equation by combining a local polynomial method with a maximum likelihood estimator. In this study, we apply the LPML method on field data to quantify the spatial and temporal variability of vertical fluxes and their uncertainties from temperature–time series measured in a Belgian lowland stream. Over several months, temperature data were collected with multilevel temperature sticks at the streambed top and at six depths for a small stream section. Long‐term estimates show a range from gaining fluxes of ?291 mm day?1 to loosing fluxes of 12 mm day?1; average seasonal fluxes ranged from ?138 mm day?1 in winter to ?16 mm day?1 in summer. With our analyses, we could determine a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Such spatial and temporal variability should be taken into account in biogeochemical cycling of carbon, nutrients and metals and in fate analysis of contaminant plumes. In general, the stream section was gaining during most of the observation period. Two short‐term high stream stage events, seemingly caused by blockage of the stream outlet, led to a change in flow direction from gaining to losing conditions. We also found more discharge occurring at the outer stream bank than at the inner one indicating a local flow‐through system. With the conducted analyses, we were able to advance our understanding of the regional groundwater flow system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
268.
Airborne LiDAR data are characterized by involving not only rich spatial but also temporal information. It is possible to extract vehicles with motion artifacts from single-pass airborne LiDAR data, based on which the motion state and velocity of vehicles can be identified and derived. In this paper, a complete strategy for urban traffic analysis using airborne LiDAR data is presented. An adaptive 3D segmentation method is presented to facilitate the task of vehicle extraction. The method features an ability to detect local arbitrary modes at multi scales, thereby making it particularly appropriate for partitioning complex point cloud data. Vehicle objects are then extracted by a binary classification using object-based features. Furthermore, the motion analysis for extracted vehicles is performed to distinguish between moving and stationary ones. Finally, the velocity is estimated for moving vehicles. The applicability and efficiency of the presented strategy is demonstrated and evaluated on three ALS datasets acquired for the propose of city mapping, where up to 87% of vehicles have been extracted and up to 83% of moving traffic can be recovered together with reasonable velocity estimates. It can be concluded that airborne LiDAR data can provide value-added products for traffic monitoring applications, including vehicle counts, location and velocity, along with traditional products such as building models, DEMs and vegetation models.  相似文献   
269.
The western Irish Sea gyre (WISG) is a cyclonic baroclinic flow around a dome of stagnant water which develops each year during the heating season in the western Irish Sea. Research was carried out to determine long-term changes in the strength of stratification within WISG and associated changes in the gyre structure, circulation patterns and retentive properties. Model simulations were carried out for the 58-year period 1951-2008. The characteristics of the gyre were quantified by means of potential energy anomaly (PEA), measuring the strength of stratification, and total kinetic energy (KE), reflecting the strength of cyclonic circulation. Additionally, long-term changes in flushing rates within the gyre were assessed.Results show that stratification in the western Irish Sea consistently begins to develop in March, increases linearly from April till June, peaks at the beginning of July and remains at close to maximum level throughout the month of July, before a start of a sharp decline at the beginning of August. The strength of stratification is significantly correlated with averaged summer air temperatures and summer wind speeds. Trend analysis of PEA shows an increase in the stratification strength over the period considered; the increase of PEA peak value is accompanied by a shortening of the gyre duration and a delay in the timing of the peak value. There is also an increasing trend in the KE value, showing that the thermal stratification plays a crucial role in the hydrography of the region. Flushing analysis shows that the stronger the stratification the lower the residence time and thus the faster the removal of the material from the western Irish Sea. Residence time within WISG shortens on average by 8 days over the 58-year period.  相似文献   
270.
Facies analysis, magnetic susceptibility, and analysis of grain size, TOC content and isotopes (137Cs, 210Pb, 226Ra, 228Ra, and 238U concentrations) were used to determine the history of the modern deposits of the Brno reservoir. The sedimentary succession can be subdivided into two main units. The lower unit is formed predominantly by medium- to coarse-grained silty sands and is interpreted as a fluvial succession deposited before the Svratka River was dammed. The upper unit consists of brownish planar laminated silts and rarely of clayey or sandy silts and is interpreted as a product of the reservoir deposition. The concentrations of 238U reflect the history of uranium mining in the upper part of the Svratka River catchment. As a consequence, 210Pb radionuclide concentrations cannot be used for establishing a sediment chronology. Concentrations of 137Cs show two marked peaks, the upper of which is attributed to the Chernobyl reactor accident in 1986, and the lower one is attributed to the maximum rate of atomic weapons testing in 1963. From these peaks, mean depositional rates of 3.2 cm year−1 for the time period of 1986–2007 and of 3.4 cm year−1 between 1963 and 1986 are calculated. Based on the known age of the reservoir, which was constructed in 1939, we can also calculate mean depositional rate for the time period of 1939–1963, which is 3.1 cm year−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号