首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
大气科学   2篇
地球物理   9篇
地质学   12篇
海洋学   3篇
天文学   15篇
自然地理   3篇
  2024年   1篇
  2023年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   7篇
  2008年   4篇
  2006年   2篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1983年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
41.
This paper describes a methodology that combines the outputs of (1) the Integrated Model to Assess the Greenhouse Effect (IMAGE Version 1.0) of the Netherlands National Institute of Public Health and Environmental Protection (RIVM) (given a greenhouse gas emission policy, this model can estimate the effects such as global mean surface air temperature change for a wide variety of policies) and (2) ECHAM-1/LSG, the Global Circulation Model (GCM) of the Max-Planck Institute for Meteorology in Hamburg, Germany. The combination enables one to calculate grid point surface air temperature changes for different scenarios with a turnaround time that is much quicker than that for a GCM. The methodology is based upon a geographical pattern of the ratio of grid point temperature change to global mean values during a certain period of the simulation, as calculated by ECHAM-1/LSG for the 1990 Scenarios A and D of the Intergovernmental Panel on Climate Change (IPCC). A procedure, based upon signal-to noise ratios in the outputs, enabled us to estimate where we have confidence in the methodology; this is at about 23% to 83% of the total of 2,048 grid points, depending upon the scenario and the decade in the simulation. It was found that the methodology enabled IMAGE to provide useful estimates of the GCM-predicted grid point temperature changes. These estimates were within 0.5K (0.25K) throughout the 100 years of a given simulation for at least 79% (74%) of the grid points where we are confident in applying the methodology. The temperature ratio pattern from Scenario A enabled IMAGE to provide useful estimates of temperature change within 0.5K (0.25K) in Scenario D for at least 88% (68%) of the grid points where we have confidence; indicating that the methodology is transferable to other scenarios. Tests with the Geophysical Fluid Dynamics Laboratory GCM indicated, however, that a temperature ratio pattern may have to be developed for each GCM. The methodology, using a temperature ratio pattern from the 1990 IPCC Scenario A and involving IMAGE, gave gridded surface air temperature patterns for the 1992 IPCC radiative-forcing Scenarios C and E and the RIVM emission Scenario B; none of these scenarios has been simulated by ECHAM-1/LSG. The simulations reflect the uncertainty range of a future warming.The work reported by the authors was carried out during their stay at the project Forestry and Climate Change of the International Institute for Applied Systems Analysis, Laxenburg, Austria.  相似文献   
42.
We examine the possibility that a substantial fraction of the total energy density in a spatially flat Universe is composed of a time-dependent and spatially inhomogeneous component whose equation-of-state differs from that of baryons, neutrinos, dark matter, or radiation. In this lecture, we report on our investigations of the case in which the additional energy component, dubbed "quintessence", is due to a dynamical scalar field evolving in a potential. We have computed the effects on the background cosmological evolution, the cosmic microwave background (CMB) and mass power spectrum, finding a broad range of cosmologically viable models. We stress three important features of the quintessence or Q-component: the time evolution of the equation-of-state; the length-scale dependence of the speed of propagation of the fluctuations in the Q-component; and, the contribution of quintessence fluctuations to the CMB anisotropy spectrum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
43.
44.
Our study at this natural analog site contributes to the evaluation of methods within a hierarchical monitoring concept suited for the control of CO2 degassing. It supports the development of an effective monitoring concept for geological CO2 storage sites—carbon capture and storage as one of the pillars of the European climate change efforts. This study presents results of comprehensive investigations along a 500-m long profile within the Hartou?ov (Czech Republic) natural CO2 degassing site and gives structural information about the subsurface and interaction processes in relation to parameters measured. Measurements of CO2 concentrations and investigation of the subsurface using electrical resistivity tomography and self-potential methods provide information about subsurface properties. For their successful application it is necessary to take seasonal variations (e.g., soil moisture, temperature, meteorological conditions) into consideration due to their influence on these parameters. Locations of high CO2 concentration in shallow depths are related to positive self-potential anomalies, low soil moistures and high resistivity distributions, as well as high δ13C values and increased radon concentrations. CO2 ascends from deep geological sources via preferential pathways and accumulates in coarser sediments. Repetition of measurements (which includes the effects of seasonal variations) revealed similar trends and allows us to identify a clear, prominent zone of anomalous values. Coarser unconsolidated sedimentary layers are beneficial for the accumulation of CO2 gas. The distribution of such shallow geological structures needs to be considered as a significant environmental risk potential whenever sudden degassing of large gas volumes occurs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号