首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   10篇
地质学   23篇
海洋学   3篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   1篇
  1984年   1篇
  1976年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
21.
This paper utilizes the Discrete Element Method to characterize energy dissipation mechanisms in cyclically loaded soils based on micromechanical considerations. Computational simulations of consolidated undrained cyclic triaxial tests were conducted at various relative densities and were subjected to cyclic loading of different frequencies and shear strain amplitudes. The different components of microscale energies were monitored during the course of the simulations and characterized into input and dissipated energies. A comparison is made between the dissipated energy computed from microscopic energy components and macroscopic energy calculated based on the area of the deviator stress-axial strain loops. These energies are then used to obtain the specific damping capacity defined as the ratio of dissipated energy during one cycle to the maximum stored elastic energy during the same cycle. The conducted simulations highlight the importance of calculating actual stored energy in the system as opposed to approximating it to be that calculated as the triangular area under the secant modulus. Finally, a series of simulations that resulted in liquefaction are discussed, and the amount of energy dissipated to liquefaction is examined based on these results.  相似文献   
22.
The area of Arghash in northeast Iran, prominent for its gold mineralization, was newly mapped on a scale of 1:20,000 with particular attention to the occurring generations of igneous rocks. In addition, geochronological and geochemical investigations were carried out. The oldest geological unit is a late Precambrian, hornblende-bearing diorite pluton with low-K composition and primitive isotope signatures. This diorite (U–Pb zircon age 554 ± 6 Ma) is most likely a remnant from a Peri-Gondwana island-arc or back-arc basin. About one-third of the map area is interpreted as an Upper Cretaceous magmatic arc consisting of a volcanic and a plutonic part. The plutonic part is represented by a suite of hornblende-bearing medium-K, I-type granitoids (minor diorite, mainly quartz–monzodiorite and granodiorite) dated at 92.8 ± 1.3 Ma (U–Pb zircon age). The volcanic part comprises medium-K andesite, dacite and tuffitic rocks and must be at least slightly older, because it is locally affected by contact metamorphism through the hornblende–granitoids. The Upper Cretaceous arc magmatism in the Arghash Massif is probably related to the northward subduction of the Sabzevar oceanic basin, which holds a back-arc position behind the main Neotethys subduction front. Small occurrences of pillow basalts and sediments (sandstone, conglomerate, limestone) tectonically intercalated in the older volcanic series may be relics of earlier Cretaceous or even pre-Cretaceous rocks. In the early Cenozoic, the Cretaceous magmatic arc was intruded by bodies of felsic, weakly peraluminous granite (U–Pb zircon age 55.4 ± 2.3 Ma). Another strong pulse of magmatism followed slightly later in the Eocene, producing large masses of andesitic to dacitic volcanic rocks. The geochemistry of this prominent Eocene volcanism is very distinct, with a high-K signature and trace element contents similar to shoshonitic series (high P, Zr, Cr, Sr and Ba). High Sr/Y ratios feature affinities to adakite magmas. The Eocene magmatism in the Arghash Massif is interpreted as related to thermal anomalies in crust and mantle that developed when the Sabzevar subduction system collapsed. The youngest magmatic activities in the Arghash Massif are lamprophyres and small intrusions of quartz–monzodiorite porphyries, which cut through all other rocks including an Oligocene–Miocene conglomerate cover series.  相似文献   
23.
Integrated risk assessment of urban water supply systems from source to tap   总被引:1,自引:1,他引:0  
Urban water supply systems (UWSS) are generally composed of water sources, transmission pipes, treatment plants, and distribution networks from source to tap and usually are exposed to variety of uncertain threatening hazards. These threats can be divided to three main groups of natural, human-made, and operational hazards which affect either water quantity or water quality. In order to evaluate the reliability of water supply systems, risk assessment tools must be used to identify threats, their probability, and consequences and vulnerabilities of each element of these systems against the hazards. Due to the complexity and uncertainties affecting water supply systems and threatening hazards, a comprehensive and effective risk assessment method is required. In this study, an integrated fuzzy hierarchical risk assessment model for water supply systems (IFHRA-WSS) is proposed to assess hazards in a complex UWSS using a systematic approach incorporating both water quantity and quality issues. This model uses a hierarchical framework for breaking down the UWSS infrastructures to their interrelated elements to reduce the overall complexity of the system. It also considers uncertainties using Fuzzy Logic approach. Effects of functional interdependencies between different components of the system have also been considered in the vulnerability analysis. IFHRA-WSS incorporates the contributions of urban water experts in a group risk assessment procedure in a way that they can be easily expressed in terms of the qualitative and quantitative risk measures. Efficiency of this model has been examined in a case study which includes a large part of a drinking water supply system in a major city in Iran. This system includes all the elements of the UWSS from the delivery point to the consumption point. In the case study, different components and subcomponents of this system have been ranked based on their estimated risk values. It is envisaged that the results of the proposed model can help the decision makers to plan for effective risk mitigation measures.  相似文献   
24.
A novel three‐dimensional particle‐based technique utilizing the discrete element method is proposed to analyze the seismic response of soil‐foundation‐structure systems. The proposed approach is employed to investigate the response of a single‐degree‐of‐freedom structure on a square spread footing founded on a dry granular deposit. The soil is idealized as a collection of spherical particles using discrete element method. The spread footing is modeled as a rigid block composed of clumped particles, and its motion is described by the resultant forces and moments acting upon it. The structure is modeled as a column made of particles that are either clumped to idealize a rigid structure or bonded to simulate a flexible structure of prescribed stiffness. Analysis is done in a fully coupled scheme in time domain while taking into account the effects of soil nonlinear behavior, the possible separation between foundation base and soil caused by rocking, the possible sliding of the footing, and the dynamic soil‐foundation interaction as well as the dynamic characteristics of the superstructure. High fidelity computational simulations comprising about half a million particles were conducted to examine the ability of the proposed technique to model the response of soil‐foundation‐structure systems. The computational approach is able to capture essential dynamic response patterns. The cyclic moment–rotation relationships at the base center point of the footing showed degradation of rotational stiffness by increasing the level of strain. Permanent deformations under the foundation continued to accumulate with the increase in number of loading cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
25.
The prediction of wave parameters has a great significance in the coastal and offshore engineering. For this purpose, several models and approaches have been proposed to predict wave parameters, such as empirical, soft computing, and numerical based approaches. Recently, soft computing techniques such as recurrent neural networks (RNN) have been used to develop sea wave prediction models. In this study, the RNN for wave prediction based on the data gathered and the measurement of the sea waves in the Caspian Sea, in the north of Iran is used for this study. The efficiency of RNNs for 3, 6, and 12 hourly and diurnal wave prediction using correlation coefficients is calculated to be 0.96, 0.90, 0.87, and 0.73, respectively. This indicates that wave prediction by using RNNs yields better results than the previous neural network approaches.  相似文献   
26.
Levels of dissolved ammonia, nitrite, nitrate, phosphate and silicate, as well as chlorosity, dissolved oxygen and hydrogen sulphide in the water of Lake Mariut have been investigated over a year. This shallow brackish-water lake, situated south of Alexandria, suffers from intense pollution. Two different water bodies can be distinguished in Lake Mariut. One, occupying the eastern side of the lake, is affected by sewage and industrial waste disposal, as well as discharge of highly polluted water from Qalaa Drain. The water in this region, which had lower regional average chlorosity values, contained abnormal higher concentrations of phosphate and nitrogenous salts in the presence of H2S. The western side was always oxic and showed higher average values of chlorosity. This western region contained lower concentrations of phosphate and nitrogenous salts, due to the influence of the relatively clean water from Umum Drain. The principal source of silicon for Lake Mariut is agricultural drainage. The annual average concentrations of phosphate and nitrogenous salts in this lake were considerably higher than those in the neighbouring comparatively less polluted Nozha Hydrodrome.  相似文献   
27.
Wastewater effluents from irrigation and the domestic and industrial sectors have serious impacts in deteriorating water quality in many rivers, particularly in areas under tidal influence. There is a need to develop an approach that considers the impact of human and natural causes of salinization. This study uses a multi-objective optimization–simulation model to investigate and describe the interactions of such impacts in the Shatt al-Arab River, Iraq. The developed model is able to reproduce the salinity distribution in the river given varying conditions. The salinity regime in the river varies according to different hydrological conditions and anthropogenic activities. Due to tidal effects, salinity caused by drainage water is seen to intrude further upstream into the river. The applied approach provides a way to obtain optimal solutions where both river salinity and deficit in water supply can be minimized. The approach is used for exploring the trade-off between these two objectives.  相似文献   
28.
29.
In this paper, a three-dimensional particle-based technique utilizing the discrete element method (DEM) is proposed to study wave propagation in a dry granular soil column. Computational simulations were conducted to investigate the soil response to sinusoidal motions with different amplitudes and frequencies. Three types of soil deposits with different void ratios were employed in these simulations. Different boundary conditions at the base such as rigid bedrock, elastic bedrock, and infinite medium were also considered. Analysis is done in time domain while taking into account the effects of soil nonlinear behavior. The computational approach is able to capture a number of essential characteristics of wave propagation including motion amplification and resonance. Dynamic soil properties were then extracted from conducted simulations and used to predict the response of the soil using the widely used equivalent linear method program SHAKE and compare its predictions to DEM results. Generally, there was a good agreement between SHAKE and DEM results except when the exciting frequency was close to the resonance frequency of the deposit where significant discrepancy in computed shear strains between SHAKE predictions and DEM results was observed.  相似文献   
30.
The current contribution presents aspects of the structural style and fault kinematics of the Rus Formation that expose at Jabal Hafit, Al Ain, United Arab Emirates. Although the major structure of Jabal Hafit is an anticlinal fold, fractures (joints and faults) are the prominent structure of the study area. The fractures can be interpreted as the distributed effect of deep-seated basement fault reactivation or to be as reactivation of deep-seated basement faults. These fractures were created during two main tectonic stress regimes. The first is a WNW–ESE S Hmax strike-slip stress regime, responsible for producing E–W to ESE–WNW joints and E–W dextral strike-slip and NNE–SSW reverse faults. This stress is interpreted to be post-Early Eocene in age and related to the second phase of thrusting in the Oman Mountains in the Miocene. The second stress regime is a NNE–SSW S Hmax transtensional (strike-slip extensive) stress regime that was responsible for N–S to NNE–SSW striking joints and NE–SW sinistral strike-slip and N–S normal faults. This regime is interpreted to be post-Middle Eocene in age. This stress was the response to the collision of the Arabian–Eurasian Plates which began during the Late Eocene and continues to the present day.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号