首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   2篇
  国内免费   2篇
测绘学   17篇
大气科学   10篇
地球物理   25篇
地质学   101篇
海洋学   2篇
天文学   22篇
自然地理   6篇
  2023年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   8篇
  2007年   11篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   10篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1981年   3篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1973年   5篇
  1967年   1篇
  1961年   1篇
  1957年   1篇
  1937年   1篇
排序方式: 共有183条查询结果,搜索用时 46 毫秒
31.
32.
In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW–SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics.

The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U–Pb method on titanite demonstrate that migmatization post-dates HP–UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic–ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian–Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic–Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons.

North of the Xiaotian–Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N–S-trending lineation with top-to-the-south shearing is dated at 260 Ma by the 40Ar/39Ar method on muscovite. This early structure related to compressional tectonics is reworked by top-to-the-north extensional shear bands.

The main deformation of the Dabieshan consists of a NW–SE-stretching lineation which wraps around the migmatitic dome but exhibits a consistently top-to-the-NW sense of shear. The Central Dabieshan is interpreted as an extensional migmatitic dome bounded by an arched, top-to-the-NW, detachment fault. This structure may account for a part of the UHP rock exhumation. However, the abundance of amphibolite restites in the Central Dabieshan migmatites and the scarcity of eclogites (found only in a few places) argue for an early stage of exhumation and retrogression of UHP rocks before migmatization. This event is coeval to the N–S extensional structures described in the North Dabieshan Domain. Recent radiometric dates suggest that early exhumation and subsequent migmatization occurred in Triassic–Liassic times. The main foliation is deformed by north-verging recumbent folds coeval to the south-verging folds of the South Dabieshan Domain. An intense Cretaceous magmatism accounts for thermal resetting of most of the 40Ar/39Ar dates.

A lithosphere-scale exhumation model, involving continental subduction, synconvergence extension with inversion of southward thrusts into NW-ward normal faults and crustal melting is presented.  相似文献   

33.
The U–Pb age determinations of zircon and rutile from the Aar massif reveal a complex evolution of the Central Alpine basement. The oldest components are found in zircons of metasediments, which bear cores of Archean age; the U–Pb age of discordant prismatic zircons of the same rocks ranges between 580 and 680 Ma, an age that is typical for Pan-African metamorphism. The zircons are interpreted as Pan-African detritus with Archean inheritance. The provenance region of the Pan-African zircons is assumed to be a terrane of Gondwana-affinity, i.e. the W. African craton or the Pentevrian microplate. The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on the rocks of the Aar massif; it is dated at 456±2 and 445 Ma by zircons of a layered migmatitic gneiss and a migmatitic leucosome, respectively, both occurring in the northernmost zones of the massif. Hercynian metamorphism never exceeded greenschist-facies conditions and is recorded by zircon in a garnet-amphibolite and by rutile in a meta-psammite that yield an age of 330 Ma. Both zircon and rutile are considered to be products of retrograde mineral reactions and therefore do not date the peak conditions of Hercynian metamorphism. The Gastern granite at the western end of the Aar massif is a contaminated granite that intruded at 303±4 Ma, contemporaneously with the wide-spread late Hercynian post-collisional I-type magmatism. The study demonstrates the potential of isotope dilution U–Pb dating of single grains and microfractions in deciphering complex evolutionary histories of polymetamorphic terrains.  相似文献   
34.
Quantifying spatial and temporal dynamics of organic matter (OM) is critical both for understanding ecosystem functioning and for predicting impacts of landscape change. To determine the influence of different habitats and coarse particulate OM (CPOM) types upon floodplain OM dynamics, we quantified aerial input, lateral surface transfer, and surface storage of CPOM over an annual cycle on the near-natural floodplain of the River Tagliamento in NE-Italy. Using these data, we modelled floodplain leaf dynamics, taking account of the spatial distribution and hydrologic connectivity of habitats, and using leaf storage as a response variable. Mean aerial CPOM input to the floodplain was similar from riparian forest and islands, but surface transfer was greater from islands, supporting the suggestion that these habitats act as “islands of fertility” along braided rivers. Leaves were the lateral conveyor of energy to more open parts of the floodplain, whereas CPOM was mainly stored as small wood in vegetated islands and riparian forest. Simulating the loss of habitat diversity (islands, ponds) decreased leaf storage on the whole floodplain, on exposed gravel and in large wood accumulations. In contrast, damming (loss of islands, ponds and floods plus floodplain overgrowth) greatly increased storage on exposed gravel. A random shuffle of habitats led to a storage increase on exposed gravel, while that in large wood accumulations and ponds declined. These results disentangle some of the complexities of CPOM dynamics in floodplain ecosystems, illustrate the value of models in understanding ecosystem functioning at a landscape level, and directly inform river management practice.  相似文献   
35.
The monitoring of turbidity currents enables accurate internal structure and timing of these flows to be understood. Without monitoring, triggers of turbidity currents often remain hypothetical and are inferred from sedimentary structures of deposits and their age. In this study, the bottom currents within 20 m of the seabed in one of the Pointe-des-Monts (Gulf of St. Lawrence, eastern Canada) submarine canyons were monitored for two consecutive years using Acoustic Doppler Current Profilers. In addition, multibeam bathymetric surveys were carried out during deployment of the Acoustic Doppler Current Profilers and recovery operations. These new surveys, along with previous multibeam surveys carried out over the last decade, revealed that crescentic bedforms have migrated upslope by about 20 to 40 m since 2007, despite the limited supply of sediment on the shelf or river inflow in the region. During the winter of 2017, two turbidity currents with velocities reaching 0·5 m sec−1 and 2·0 m sec−1, respectively, were recorded and were responsible for the rapid (<1 min) upstream migration of crescentic bedforms measured between the autumn surveys of 2016 and 2017. The 200 kg (in water) mooring was also displaced 10 m down-canyon, up the stoss side of a bedform, suggesting that a dense basal layer could be driving the flow during the first minute of the event. Two other weaker turbidity currents with speeds <0·5 m sec−1 occurred, but did not lead to any significant change on the seabed. These four turbidity currents coincided with strong and sustained wind speed >60 km h−1 and higher than normal wave heights. Repeat seabed mapping suggests that the turbidity currents cannot be attributed to a canyon-wall slope failure. Rather, sustained windstorms triggered turbidity currents either by remobilizing limited volumes of sediment on the shelf or by resuspending sediment in the canyon head. Turbidity currents can thus be triggered when the sediment volume available is limited, likely by eroding and incorporating canyon thalweg sediment in the flow, thereby igniting the flow. This process appears to be particularly important for the generation of turbidity currents capable of eroding the lee side of upslope migrating bedforms in sediment-starved environments and might have wider implications for the activity of submarine canyons worldwide. In addition, this study suggests that a large external trigger (in this case storms) is required to initiate turbidity currents in sediment-starved environments, which contrasts with supply-dominated environments where turbidity currents are sometimes recorded without a clear triggering mechanism.  相似文献   
36.
The fossil H chondrite Brunflo, found in a slab of Ordovician limestone from central Sweden, is pervasively altered to an assemblage dominated by calcite and barite. The meteorite is surrounded by a 15–20 cm wide zone of lighter colors than the unaffected limestone due to dissolution of hematite. Here we present detailed geochemical analyses of two meteorite samples, 14 limestone samples at distances from 0 to 29 cm along two profiles from the meteorite, and a reference sample of Brunflo limestone. Element concentrations in Brunflo and surrounding bleached limestone have been strongly disturbed during two stages of alteration (early oxygenated and deep burial). In the meteorite, the Ni/Co ratio has changed from an initial value of 20 to 0.8 and redox sensitive elements like V, As, Mo, Re and U are strongly enriched. The sulfur isotope composition of barite from Brunflo (δ34S=+35‰) indicates initial loss of meteoritic sulfide, followed by later accumulation of sea water sulfate as barite. During deep burial under more reducing conditions, reduction processes supported by an externally derived reductant possibly derived from alum shale underlying the limestone, were largely responsible for the observed redox phenomena. In spite of massive redistribution of many elements, concentrations of Pt, Ir and Au remain at chondritic levels. The geochemistry and mineralogy of alteration determined for Brunflo are similar to those in “reduction spots” in red beds, where accumulation of a similar suite of elements (except Mo, Re) occurred as a result of isolated reduction activity.  相似文献   
37.
During late Early to Late Cretaceous, the Peruvian coastal margin underwent fast and oblique subduction and was characterized by important arc plutonism (the Peruvian Coastal Batholith) and formation of volcanosedimentary basins known as the Western Peruvian Trough (WPT). We present high-precision U–Pb ages and initial Hf isotopic compositions of zircon from conformable volcanic and crosscutting intrusive rocks within submarine volcanosedimentary strata of the WPT hosting the Perubar massive sulfide deposit. Zircons extracted from both the volcanic and intrusive rocks yield concordant U–Pb ages ranging from 67.89±0.18 Ma to 69.71±0.18 Ma, indicating that basin subsidence, submarine volcanism and plutonic activity occurred in close spatial and temporal relationship within the Andean magmatic arc during the Late Cretaceous. Field observations, satellite image interpretation, and plate reconstructions, suggest that dextral wrenching movements along crustal lineaments were related to oblique subduction. Wrench tectonics is therefore considered to be the trigger for the formation of the WPT as a series of pull-apart basins and for the emplacement of the Coastal Batholith. The zircon initial Hf values of the dated magmatic rocks fall between 5.5 and 7.4, and indicate only very subordinate influence of a sedimentary or continental component. The absence of inherited cores in the zircons suggest a complete lack of old basement below the WPT, in agreement with previous U–Pb and Sr isotopic data for batholithic rocks emplaced in the WPT area. This is supported by the presence of a most likely continuous block of dense (~3.0 g/cm3) material observed beneath the WPT area on gravimetric crustal cross sections. We suggest that this gravimetric anomaly may correspond to a piece of lithospheric mantle and/or oceanic crust inherited from a possible Late Permian–Triassic rifting. Such young and mafic crust was the most probable source for arc magmatism in the WPT area.  相似文献   
38.
39.
A 2D horizontal reactive transport model of a chromate-contaminated site near Rivera, Switzerland, was developed using the computer code CrunchFlow to evaluate site remediation strategies. Transport processes were defined according to the results of an existing hydrological model, and the definition of geochemical (reactive) processes is based on the results of a detailed mineralogical and geochemical site characterization leading to a comprehensive conceptual site model. Kinetics of naturally occurring Cr(VI) reduction by Fe(II) and natural solid organic matter is quantified by fitting measured Cr isotope ratios to a modeled 1D section along the best constrained flow line. The simulation of Cr isotope fractionation was also incorporated into the 2D model. Simulation of the measured present day Cr(VI) plume and δ53Cr value distribution was used for the 2D model calibration and corresponds to a situation where only monitored natural attenuation (MNA) is occurring. Other 2D model runs simulate alternate excavation scenarios. The simulations show that with an excavation of the top 2–4 m the groundwater Cr(VI) plume can be minimized, and that a deeper excavation depth only diminishes the plume if all the contaminants can be removed. A combination of an excavation of the top 2–4 m and monitoring of the ongoing natural Cr(VI) reduction is suggested as the most ecological and economical remediation strategy, even though a remaining time period with ongoing subsoil Cr(VI) contamination in the order of 1 ka is predicted.  相似文献   
40.
U-Pb zircon dating, Sr-Nd isotope tracing and major/trace/RE element analyses were performed to constrain the age, origin and geodynamic significance of plagiogranites that intrude lherzolites and gabbros in the Ligurian Alps and the Northern Apennines. In addition, a host Fe-diorite was investigated. Samples from the Ligurian Alps were collected from the Voltri Group and the Sestri-Voltaggio Zone, whereas the plagiogranites from the Northern Apennines were taken in the Bracco unit. All these units have been affected by Alpine metamorphism reaching eclogite facies in the Voltri Group, blueschist degree in the Sestri Voltaggio samples, and prehnite-pumpellyite facies in the Bracco Unit, which has additionally been affected by rodingitization.

U-Pb zircon ages of 150 ± 1, 153 ± 1 and ≈ 156 Ma were obtained, respectively, for two plagiogranites and the host Fe-diorite in the Ligurian Alps, and an age of 153 ± 1 Ma was determined for the plagiogranite in Northern Apennines. Inherited components in zircon and initial Pb in plagioclase indicate mixing of variously differentiated basaltic magmas with small amounts of roughly 1.7–2.1 Ga old continental crust material. REE patterns in both the plagiogranites and the host diorite are characterized by high REE abundance, and moderate LREE enrichment. Nd isotopic compositions lie in the range of N-MORB sources, yielding initial epsilon Nd values between + 8.8 and + 9.7, whereas Sr is isotopically heterogeneous. The geochemical pattern of the plagiogranites and the host Fe-diorite requires melting of a MORB-type mantle source that experienced LREE enrichment shortly before melting. The most likely explanation for such enrichment is the injection of melts derived by small degrees of melting from an adjacent mantle region. The basaltic, LREE-enriched parent magmas generated from this enriched domain have probably undergone up to about 72% of low-pressure fractional crystallization prior to their emplacement into the gabbro-peridotite complex.

The 156–150 Ma magmatism occurred in close relation to normal faulting, sedimentation of breccias, and detachment of the mantle complex from its overlying continental crust, followed by exposure on the ocean floor. This tectono-magmatic event in the Ligurian Alps and the Northern Apennines reflects rifting of the Adriatic-Iberian continental plate segment, preceding wider opening of the Piedmont-Ligurian ocean basin and pillow basalt deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号