首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   7篇
大气科学   20篇
地球物理   23篇
地质学   77篇
海洋学   5篇
天文学   3篇
自然地理   25篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   7篇
  2016年   8篇
  2015年   4篇
  2014年   11篇
  2013年   8篇
  2012年   8篇
  2011年   13篇
  2010年   13篇
  2009年   8篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   9篇
  2004年   2篇
  2003年   3篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1995年   4篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有153条查询结果,搜索用时 2 毫秒
91.
92.
Manganese‐ and iron‐rich materials are of major geoscientific and economic interest, many of which contain microscopic features that provide valuable information. To obtain accurate results, a homogeneous microanalytical reference material for calibration is needed. Several researchers have used the Mn‐ and Fe‐rich RMs, JMn‐1, NOD‐A‐1, NOD‐P‐1 and FeMn‐1, for this purpose; therefore, they were tested in this study to determine their suitability for microanalysis. Their homogeneity was investigated by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) with two different types of lasers (nano‐ and femtosecond), with spot and line scan analyses and with different operating parameters, such as spot size, pulse repetition rate and fluence. As the established manganese nodule RMs revealed inhomogeneities for picogram to microgram test portions, we also investigated the new synthetic Fe‐ and Mn‐rich RM, FeMnOx‐1. FeMnOx‐1 was found to be homogeneous for large (ø 40 μm: 2% RSD repeatability) and small (ø 8–10 μm: 10% RSD repeatability) spot sizes. This homogeneity is in the range of the homogeneous NIST SRM 610 and GSE‐1G reference glasses. Furthermore, FeMnOx‐1 revealed a large‐scale homogeneity within uncertainties of a few per cent, using test portions in the ng range, when measuring four individual mounts of this material.  相似文献   
93.
94.
In order to contribute to a reliable, easy-to-handle and economically viable erosion risk assessment of contaminated riverine sites, the present study aims to implement master-variables best characterising the sediment stability. Thus, a wide range of sediment properties was related to the critical shear stress for mass erosion, determined in the SETEG (Stroemungskanal zur Ermittlung der tiefenabhaengigen Erosionsstabilitaet von Gewaessersedimenten) pressurised channel, with special emphasis on vertical and temporal gradients in the Lauffen reservoir on the River Neckar. Over the course of 1 year, positive impacts of some macrofauna species and benthic diatoms on the sediment stability were detected for the sediment surface (0.5 cm). However, a high seasonal variability of biological parameters caused varying relations with erosion resistance in the upper sediment layers as shown for the colloidal carbohydrates. Considering only deeper sediment layers (5–35 cm), a more general pattern could be revealed with correlations between the critical shear stress and single sediment properties such as depth, grain size, total organic carbon (TOC), cation exchange coefficient (CEC), carbohydrates and proteins. Firstly, the influence of physico-chemical and biological properties on erosion resistance became evident, even over depths at 0–35 cm. Secondly, inter-particle forces are most important for erosion resistance. These are enhanced in fine-grained sediment layers, offering high binding capacities but also strengthened by polymeric substances permeating the void space and coating particles. These covariance patterns of sedimentological and biological parameters are addressed by multivariate statistical tests (principal component analysis), resulting in a higher magnitude of the correlation coefficient between critical shear stress and the master-variables in main component II (polymeric substances, grain size, TOC, CEC; R=0.77) compared to single correlations.  相似文献   
95.
96.
Many problems in geology, especially structural geology, can only be solved by detailed mapping. Presently, mapping is still mainly carried out on paper using techniques from the 19th Century. However, tools are now available to carry out most mapping tasks on microcomputers in the field without any need of paper. This speeds up geological mapping and reduces the errors involved in the mapping process. Digital mapping also allows work in featureless areas and areas of great structural complexity that would not be possible using paper maps. We present two practical examples of the new technology of digital mapping using microcomputers, from Namibia and Greece.  相似文献   
97.
In the formation of zeolites by hydrothermal alteration volcanic glasses are the starting material in most cases. The experiments aimed at demonstrating in what way the chemistry of the volcanic glass influences:
  1. the alteration rate of the volcanic glass to zeolites,
  2. the kind of zeolites being formed and their formation conditions.
Three volcanic glasses were used, a basaltic, a phonolitic, and a rhyolitic one. The experimental conditions were as similar as possible to the natural alteration conditions. Solutions being used: H2O dist (pH ~5.5), 0.01 n NaOH (pH ~10.5), and solutions of similar chemistry to the natural ones. The temperatures were 180 °, 200 °, 250 ° C. The experiments were carried out both in closed and in open systems. The experimental results show a difference in the alteration rate and in the zeolites being formed between the basaltic and the phonolitic glasses on the one hand and the rhyolitic one on the other. In case of the closed system the SiO2-poor volcanic glasses react more rapidly than the SiO2-rich one. The zeolites being formed are chabazite, phillipsite, analcime respectively mordenite, analcime. In case of the open system the influence of the chemistry of the volcanic glass on the alteration rate and the zeolite being formed is less significant. Which zeolite is formed at a given temperature depends on: the chemistry of the starting material, the chemistry of the reacting solution and wether there is a closed or an open system.  相似文献   
98.
Drilling of the new Gotthard rail base tunnel (central Alps) opened a large number of water-conducting fractures in granite and gneiss of the crystalline basement. The overburden reaches locally more than 2000 m and water and rock temperature is up to 45 °C. The tunnel crosses a series of steeply dipping fractured rock units that also crop out at the surface above the tunnel. Recharge water enters the fractured rocks in the high mountainous area, migrates gravity driven to the sampling locality in the tunnel. Along its flow path it reacts with rocks exposed on the fractures where it dissolves the principal granite minerals, resulting in high-pH Na2CO3 waters.The tunnel waters contain unusually high concentrations of fluoride ranging from 5 to 29 mg/L. Alteration of F-bearing biotite to F-free chlorite is one of the sources of fluorine. The highest F-concentrations result from the equilibration of low-Ca waters with fluorite. Fluoride concentration is strongly lithology-dependent and sharp discontinuities in both, concentration and saturation state with respect to fluorite occur at the contacts of the different gneiss and granite slabs.Chloride concentrations vary between 1 and 1300 mg/L. In contrast, the Cl/Br mass ratio exhibits small variations and centers around 110 suggesting a common source for the Cl and Br, which is independent of the lithology. In the northern part of the tunnel, Cl and Br are chiefly derived from saline pore fluids of one lithology which is then mixed with low-salinity water along flow paths. Cl/Br ratios of the waters in the southern part of the tunnel section are similar to those measured in experimental leachates from different tunnel rocks, suggesting that leaching of metamorphic fluids in the pore space is the main source of both Cl and Br.  相似文献   
99.
100.
We present varve chronologies for sediments from two maar lakes in the Valle de Santiago region (Central Mexico): Hoya La Alberca (AD 1852–1973) and Hoya Rincón de Parangueo (AD 1839–1943). These are the first varve chronologies for Mexican lakes. The varved sections were anchored with tephras from Colima (1913) and Paricutín (1943/1944) and 210Pb ages. We compare the sequences using the thickness of seasonal laminae and element counts (Al, Si, S, Cl, K, Ti, Mn, Fe, and Sr) determined by micro X-ray fluorescence spectrometry. The formation of the varve sublaminae is attributed to the strongly seasonal climate regime. Limited rainfall and high evaporation rates in winter and spring induce precipitation of carbonates (high Ca, Sr) enriched in 13C and 18O, whereas rainfall in summer increases organic and clastic input (plagioclase, quartz) with high counts of lithogenic elements (K, Al, Ti, and Si). Eolian input of Ti occurs also in the dry season. Moving correlations (5-yr windows) of the Ca and Ti counts show similar development in both sequences until the 1930s. Positive correlations indicate mixing of allochthonous Ti and autochthonous Ca, while negative correlations indicate their separation in sublaminae. Negative excursions in the correlations correspond with historic and reconstructed droughts, El Niño events, and positive SST anomalies. Based on our data, droughts (3–7 year duration) were severe and centred around the following years: the early 1850s, 1865, 1880, 1895, 1905, 1915 and the late 1920s with continuation into the 1930s. The latter dry period brought both lake systems into a critical state making them susceptible to further drying. Groundwater overexploitation due to the expansion of irrigation agriculture in the region after 1940 induced the transition from calcite to aragonite precipitation in Alberca and halite infiltration in Rincón. The proxy data indicate a faster response to increased evaporation for Rincón, the lake with the larger maar dimensions, solar radiation receipt and higher conductivity, whereas the smaller, steeper Alberca maar responded rapidly to increased precipitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号