首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   34篇
  国内免费   4篇
测绘学   17篇
大气科学   63篇
地球物理   221篇
地质学   289篇
海洋学   53篇
天文学   155篇
综合类   1篇
自然地理   40篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   24篇
  2017年   20篇
  2016年   24篇
  2015年   32篇
  2014年   22篇
  2013年   28篇
  2012年   29篇
  2011年   53篇
  2010年   39篇
  2009年   44篇
  2008年   33篇
  2007年   29篇
  2006年   19篇
  2005年   24篇
  2004年   17篇
  2003年   25篇
  2002年   18篇
  2001年   18篇
  2000年   22篇
  1999年   19篇
  1998年   15篇
  1997年   17篇
  1996年   10篇
  1995年   12篇
  1994年   8篇
  1993年   12篇
  1992年   11篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   10篇
  1987年   6篇
  1986年   11篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   11篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   5篇
  1973年   9篇
  1970年   10篇
  1952年   6篇
排序方式: 共有839条查询结果,搜索用时 46 毫秒
101.
102.
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6±1.9 Gyr . Our upper limit for the orbital eccentricity of only 8×10−7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.  相似文献   
103.
Summary. Phase boundaries are included in dynamical finite element models of mantle convection. They are represented by point chains which act as additional sources of buoyancy forces when distorted, and as additional source or sink of heat. The influence of the exothermic olivine-spinel transition is studied in both shallow and deep convection models. The flow is only slightly enhanced by the transition. The increase of temperature due to latent heat release is step-like in the deep model, in the case of shallow convection it is more diffuse. Other quantities like ocean-floor topography, gravity anomalies, and stress distribution are no more than moderately affected. In a further investigation the effect of spinel post-spinel transition, whether endothermic or exothermic, on deep convection is examined. The effect on the flow is negligibly small in both cases.  相似文献   
104.
A synthesis of the majority of the available mare basalt data shows that basalts and glasses came from 28 different volcanic units. The compositions of the magmas of 12 of these units can be calculated with a high degree of confidence. Reasonable estimates can be made for the compositions of nine of the remaining units. In addition, the compositions of three general magma types can be obtained from data derived from the Luna 16, Luna 24, and Apollo 17 fines. The compositional data presented provide a firm basis for the further study of the characteristics of the mare basalt magma source region.  相似文献   
105.
The Kramer Creek, Colorado, chondrite was found in 1966 and identified as a meteorite in 1972. Bulk chemical analysis, particularly the total iron content (20.36%) and the ratio of Fetotal/SiO2 (0.52), as well as the compositions of olivine (Fa21.7) and orthopyroxene (Fs18.3) place the meteorite into the L-group of chondrites. The well-defined chondritic texture of the meteorite, the presence of igneous glass in the chondrules and of low-Ca clinopyroxene, as well as the slight variations in FeO contents of olivine (2.4% MD) and orthopyroxene (5.6% MD) indicate that the chondrite belongs to the type 4 petrologic class.  相似文献   
106.
Ulrich Anzer 《Solar physics》1978,57(1):111-118
In this note we investigate the possibility of magnetic driving of loop transients. The action of local magnetic forces to balance gravity in a coasting loop and to confine the loop has been proposed by Mouschovias and Poland (1977). In this paper we use similar configurations but deal with the global field structure and present models which show both the initial phase of large acceleration and the later phase of almost constant velocity. We use very simple one-dimensional models consisting of a ring current which is subjected to gravitational attraction. The velocity curves calculated for these models are in good agreement with the observations. Therefore we conclude that if such ring currents can be produced fast enough in the solar corona, they are capable of driving the loop transients observed in the ATM white light coronagraph.On leave from Max-Planck Institut für Physik und Astrophysik, Föhringer Ring 6, 8 München 40, F.R.G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
107.
The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units 1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2–3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5–6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22–43% basalt, ~0.4–1% basaltic andesite, ~29–54% andesite, ~2–3% dacite, and ~18–40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely formed by episodic partial melting of upper crustal rocks in response to emplacement of basalts. There are no examples of mingled rhyolitic and basaltic magmas. Whatever mechanism is invoked to explain the generation of andesite at the Tequila volcanic field, it must be consistent with a dominantly bimodal distribution of high-Ti basalt and rhyolite for an 800 kyr interval beginning ~1 Ma, which abruptly switched to punctuated bursts of predominantly andesitic volcanism over the last 200 kyrs.Electronic Supplementary Material Supplementary material is available in the online version of this article at Editorial responsility: J. Donnelly-NolanThis revised version was published online in January 2005 with corrections to Tables 1 and 3.An erratum to this article can be found at  相似文献   
108.
The motion of convective cells in an environment which changes rapidly with depth is examined. In such an environment a cell may move through regions with different levels of ionization and with associated differences in heat capacity. The energy equation is cast in a manner which is independent of the history of these cells. The convective flux at a given level of the atmosphere is written as an average over an ensemble of cells originating at a range of other levels. A procedure for correcting the temperature gradient for these non-local effects is described and results for a model solar atmosphere are given. The principal results are: (1) The rms velocity varies smoothly and is non-zero well into the photosphere (e.g.,v rsm=1.4 km/sec at =0.2); (2) Convective overshoot reduces the radiative flux to 60% and 90% of the total at =2.5 and 0.2 respectively; and (3) The interior adiabat of the convective envelope is less sensitive to the assumed value of the average cell size than in the usual treatment of convection.Supported in part by the National Science Foundation [GP-9433, GP-9114], the Office of Naval Research [Nonr-220(47)], and Air Force Grant AG-AFOSR-171-67.  相似文献   
109.
110.
Both hypervelocity impact and dynamic spall experiments were carried out on a series of well-indurated samples of gabbro to examine the relation between spall strength and maximum spall ejecta thickness. The impact experiments carried out with 0.04- to 0.2-g, 5- to 6-km/sec projectiles produced decimeter- to centimeter-sized craters and demonstrated crater efficiencies of 6 × 10?9 g/erg, an order of magnitude greater than in metal and some two to three times that of previous experiments on less strong igneous rocks. Most of the crater volume (some 60 to 80%) is due to spall failure. Distribution of cumulative fragment number, as a function of mass of fragments with masses greater than 0.1 g yield values of b = d(log Nf)/d log(m) ?0.5 ?0.6, where N is the cumulative number of fragments and m is the mass of fragments. These values are in agreement or slightly higher than those obtained for less strong rocks and indicate that a large fraction of the ejecta resides in a few large fragments. The large fragments are plate-like with mean values of B/A and C/A 0.8 0.2, respectively (A = long, B = termediate, and C = short fragment axes). The small equant-dimensioned fragments (with mass < 0.1 g and B ~ 0.1 mm) represent material which has been subjected to shear failure. The dynamic tensile strenght of San Marcos gabbro was determined at strain rates of 104 to 105 sec?1 to be 147 ± 9 MPa. This is 3 to 10 times greater than inferred from quasi-static (strain rate 100 sec?1) loading experiments. Utilizing these parameters in a continuum fracture model predicts a tensile strenght of σmε?[0.25–0.3], where ε is strain rate. It is suggested that the high spall strenght of basic igneous rocks gives rise to enhanced cratering efficiencies due to spall in the <102-m crater diamter strength-dominated regime. Although the impact spall mechanism can enhance cratering efficiencies it is unclear that resulting spall fragments achieve sufficient velocities such that fragments of basic rocks can escape from the surfaces of planets such as the Moon or Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号