首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   19篇
  国内免费   4篇
测绘学   15篇
大气科学   50篇
地球物理   154篇
地质学   210篇
海洋学   28篇
天文学   122篇
综合类   1篇
自然地理   31篇
  2021年   5篇
  2020年   4篇
  2018年   17篇
  2017年   13篇
  2016年   17篇
  2015年   24篇
  2014年   18篇
  2013年   23篇
  2012年   24篇
  2011年   43篇
  2010年   31篇
  2009年   34篇
  2008年   21篇
  2007年   24篇
  2006年   13篇
  2005年   16篇
  2004年   12篇
  2003年   18篇
  2002年   10篇
  2001年   9篇
  2000年   16篇
  1999年   13篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   9篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   6篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1976年   6篇
  1975年   4篇
  1973年   7篇
  1970年   8篇
  1969年   4篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有611条查询结果,搜索用时 0 毫秒
591.
592.
A non-colloidal fraction separated by physical means from an HFHCl-resistant residue of the Allende carbonaceous meteorite exhibits a ratio of isotopically “normal” (Q-type) xenon to “anomalous” xenon (X-type) that is ~4 times larger than usually observed. Coincidentally this fraction contains carbon that is isotopically heavier by ~10%. than bulk Allende residue samples. ESCA analyses of companion colloidal separates show that the major portion of the S contained in our HFHCl-residues is elemental rather than a sulfide. They also confirm earlier observations that no elementally distinct surface coating is present, in accord with the absence of a surface-sited sulfur-bearing gas carrier, and that the oxygen content is increased after etching with nitric acid. For these separates noble gas data coupled with the ESCA data for nitrogen and the isotopic data for carbon point to the existence of heterogeneities among the noble gas-, carbon- and nitrogen-bearing phases and, thus, preservation of discrete components from the variety of source regions (or production mechanisms, or both) sampled by the Allende parent body. In sharp contrast to the success of physical and chemical methods in yielding samples in which one of the major noble gas components predominates to an extraordinary degree over the other, carbon isotopic compositions that have been inferred for the respective carrier phases in these same samples are strongly contradictory. Mass and isotope balance considerations lead us to conclude that a major fraction of the carbonaceous matter in Allende is noble-gas-poor, a result that could be confirmed by direct isolation of a sample, the carbon in which is dominated by this variety; and for that reason no simple relationship is discernable yet between observed isotopic compositions and either major noble gas component. Similar ambiguities may exist for nitrogen. The possible relationship between carbon-rich phases in ureilites and carbonaceous chondrites is considered.  相似文献   
593.
In order to better constrain the Li isotope composition of the bulk solar system and Li isotope fractionation during accretion and parent body processes, Li isotope compositions and concentrations were determined on a number of meteorite falls and finds. This is the first comprehensive study that systematically investigates a representative set of samples from carbonaceous chondrites (CI, CM2, CO3, CV3, CK4 and one ungrouped member), enstatite chondrites (EH, EL), ordinary chondrites (H, L, LL), and achondrites (one eucrite, diogenites, one pallasite, and a silicate inclusion from a IAB iron).

Carbonaceous chondrites have an average isotope composition of δ7Li = + 3.2‰ ± 1.9 (2σ) which agrees with the average composition of relatively pristine olivines (representative for the bulk composition) from the Earth primitive upper mantle (PUM). This is lighter than the average δ7Li of the basaltic differentiates of the Earth, Moon and Mars and the achondrites. It is an important observation, however, that the lighter end of the isotopic range of the differentiates always coincides with the averages of the mantle olivines and the carbonaceous chondrites. From this we conclude that the bulk of the inner solar system consists mostly of material from carbonaceous chondrites and that the variation seen in the differentiates is due to planetary body processes. Ordinary chondrites are significantly lighter than carbonaceous chondrites. No significant differences in δ7Li exist between enstatite chondrites (n = 3) and carbonaceous or ordinary chondrites. The difference between carbonaceous and ordinary chondrites and the variability within the chondrites could indicate the existence of distinct Li isotope reservoirs in the early solar nebula.  相似文献   

594.
Profile data from simultaneous sodar and tethered balloon measurements have been analyzed with respect to the complex structure of the atmospheric boundary layer in the Upper Rhine Valley. Special attention was focused on ozone concentration profiles measured with a novel lightweight ozone sensor at the balloon. In general, good agreement was found between the signature of the ozone concentration profiles and special features of the backscattered sound intensity profiles. This allows reliable estimation of the mixing height from the sodar data even in a complex stable ABL, except for very shallow mixing layers (below about 75 m), which could not be detected by the sodar.  相似文献   
595.
In polycrystalline aggregates of olivine with mean grain sizes above 35 μm plus a low basaltic melt fraction, both wetted and melt-free grain boundaries are observed after equilibration times at high pressures and temperatures of between 15 and 25 days. In order to assess a possible dependence of the wetting behaviour on the relative orientation of neighbouring grains, a SEM based technique, electron backscatter diffraction (EBSD), is used to determine grain orientations. From the grain orientations relative orientations of neighbouring grains are calculated, which are expressed as misorientation axis/angle pairs. The distribution of misorientation angles and axes of melt-free grain boundaries differ significantly from a purely random distribution, whereas those of wetted grain boundaries are statistically indistinguishable from the random distribution. The relative orientation of two neighbouring grains therefore influences the character of their common grain boundary. However, no clustering towards special (coincident site lattice) misorientation axes is observed, with the inference that the energy differences between special and general misorientations are too small to lead to the development of preferred misorientations during grain growth. Received: 8 December 1997 / Revised, accepted: 6 April 1998  相似文献   
596.
SAR stereo image analysis for 3D information extraction is mostly carried out based on imagery taken under same-side or opposite-side viewing conditions. For urban scenes in practice stereo is up to now usually restricted to the first configuration, because increasing image dissimilarity connected with rising illumination direction differences leads to a lack of suitable features for matching, especially in the case of low or medium resolution data. However, due to two developments SAR stereo from arbitrary viewing conditions becomes an interesting option for urban information extraction. The first one is the availability of airborne sensor systems, which are capable of more flexible data acquisition in comparison to satellite sensors. This flexibility enables multi-aspect analysis of objects in built-up areas for various kinds of purpose, such as building recognition, road network extraction, or traffic monitoring. The second development is the significant improvement of the geometric resolution providing a high level of detail especially of roof features, which can be observed from a wide span of viewpoints. In this paper, high-resolution SAR images of an urban scene are analyzed in order to infer buildings and their height from the different layover effects in views taken from orthogonal aspect angles. High level object matching is proposed that relies on symbolic data, representing suitable features of urban objects. Here, a knowledge-based approach is applied, which is realized by a production system that codes a set of suitable principles of perceptual grouping in its production rules. The images are analyzed separately for the presence of certain object groups and their characteristics frequently appearing on buildings, such as salient rows of point targets, rectangular structures or symmetries. The stereo analysis is then accomplished by means of productions that combine and match these 2D image objects and infer their height by 3D clustering. The approach is tested using real SAR data of an urban scene.  相似文献   
597.
A combined geochronological and structural analysis of the Miocene Negra Muerta Caldera was designed to better understand caldera formation associated with prominent faults on the central Andean plateau. Rb–Sr ages of the caldera outflow facies indicate that caldera formation occurred in two volcano-tectonic episodes. The first episode commenced with explosive eruption of the 9.0±0.1 Ma andesitic Acay Ignimbrite followed by a period of volcanic quiescence and moderate tectonic activity. Dominant volcanic and tectonic activity occurred during the second episode, which is bracketed by eruption of the 7.6±0.1 Ma rhyolitic Toba 1 Ignimbrite and effusive discharge of the 7.3±0.1 Ma rhyodacitic to andesitic lava flows. Structural relationships between rocks of the Negra Muerta Volcanic Complex and collapse-induced normal faults, notably NE-striking normal faults, agree with simultaneous volcanic activity and floor subsidence of the caldera during the second episode. Floor subsidence was achieved by tilting on an outward dipping reverse fault to the northwest of the caldera floor around a hinge zone located south of the caldera floor. This induced horizontal extension of the caldera floor and was accomplished by fragmentation of, and intrusion of dikes into, the floor. Collapse-induced and post-collapse fault populations of the caldera do not differ significantly in the directions of their axes of maximum extension and are in this respect kinematically compatible with left-lateral slip on the nearby Olacapato-El Toro Fault Zone. This furnishes evidence for a kinematic control by prominent faults on the formation of collapse calderas in the central Andes. The structural analysis of the Negra Muerta Caldera shows that collapse calderas can serve as deformation markers that contribute in elucidating the regional kinematic regime and the time of activity of prominent dislocations genetically related to collapse calderas.  相似文献   
598.
Microbially mediated sulfate reduction affects the isotopic composition of dissolved and solid sulfur species in marine sediments. Experiments and field data show that the composition is also modified in the presence of sulfate-reducing microorganisms. This has been attributed either to a kinetic isotope effect during the reduction of sulfate to sulfite, cell-internal exchange reactions between enzymatically-activated sulfate (APS), and/or sulfite with cytoplasmic water. The isotopic fingerprint of these processes may be further modified by the cell-external reoxidation of sulfide to elemental sulfur, and the subsequent disproportionation to sulfide and sulfate or by the oxidation of sulfite to sulfate. Here we report values from interstitial water samples of ODP Leg 182 (Site 1130) and provide the mathematical framework to describe the oxygen isotope fractionation of sulfate during microbial sulfate reduction. We show that a purely kinetic model is unable to explain our data, and that the data are well explained by a model using oxygen isotope exchange reactions. We propose that the oxygen isotope exchange occurs between APS and cytoplasmic water, and/or between sulfite and adenosine monophosphate (AMP) during APS formation. Model calculations show that cell external reoxidation of reduced sulfur species would require up to 3000 mol/m3 of an oxidant at ODP Site 1130, which is incompatible with the sediment geochemical data. In addition, we show that the volumetric fluxes required to explain the observed data are on average 14 times higher than the volumetric sulfate reduction rates (SRR) obtained from inverse modeling of the porewater data. The ratio between the gross sulfate flux into the microbes and the net sulfate flux through the microbes is depth invariant, and independent of sulfide concentrations. This suggests that both fluxes are controlled by cell density and that cell-specific sulfate reduction rates remain constant with depth.  相似文献   
599.
Abstract– As part of the MEMIN research program this project is focused on shock deformation experimentally generated in dry, porous Seeberger sandstone in the low shock pressure range from 5 to 12.5 GPa. Special attention is paid to the influence of porosity on progressive shock metamorphism. Shock recovery experiments were carried out with a high‐explosive set‐up that generates a planar shock wave, and using the shock impedance method. Cylinders of sandstone of average grain size of 0.17 mm and porosity of about 19 vol%, and containing some 96 wt% SiO2, were shock deformed. Shock effects induced with increasing shock pressure include: (1) Already at 5 GPa the entire pore space is closed; quartz grains show undulatory extinction. On average, 134 fractures per mm are observed. Dark vesicular melt (glass) of the composition of the montmorillonitic phyllosilicate component of this sandstone occurs at an average amount of 1.6 vol%. (2) At 7.5 GPa, quartz grains show weak but prominent mosaicism and the number of fractures increases to 171 per millimeter. Two additional kinds of melt, both based on phyllosilicate precursor, could be observed: a light colored, vesicular melt and a melt containing large iron particles. The total amount of melt (all types) increased in this experiment to 2.4 vol%. Raman spectroscopy confirmed the presence of shock‐deformed quartz grains near the surface. (3) At 10 and 12.5 GPa, quartz grains also show weak but prominent mosaicism, the number of fractures per mm has reached a plateau value of approximately 200, and the total amount of the different melt types has increased to 4.8 vol%. Diaplectic quartz glass could be observed locally near the impacted surface. In addition, local shock effects, most likely caused by multiple shock wave reflections at sandstone‐container interfaces, occur throughout the sample cylinders and include locally enhanced formation of PDF, as well as shear zones associated with cataclastic microbreccia, diaplectic quartz glass, and SiO2 melt. Overall findings from these first experiments have demonstrated that characteristic shock effects diagnostic for the confirmation of impact structures and suitable for shock pressure calibration are rare. So far, they are restricted to the limited formation of PDF and diaplectic quartz glass at shock pressures of 10 GPa and above.  相似文献   
600.
High quality observations of the atmosphere are particularly required for monitoring global climate change. Radio occultation (RO) data, using Global Navigation Satellite System (GNSS) signals, are well suited for this challenge. The special climate utility of RO data arises from their long-term stability due to their self-calibrated nature. The German research satellite CHAllenging Minisatellite Payload for geoscientific research (CHAMP) continuously records RO profiles since August 2001 providing the first opportunity to create RO based climatologies for a multi-year period of more than 5 years. A period of missing CHAMP data from July 3, 2006 to August 8, 2006 can be bridged with RO data from the GRACE satellite (Gravity Recovery and Climate Experiment). We have built seasonal and zonal mean climatologies of atmospheric (dry) temperature, microwave refractivity, geopotential height and pressure with 10° latitudinal resolution. We show representative results with focus on dry temperatures and compare them with analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF). Although we have available only about 150 CHAMP profiles per day (compared to millions of data entering the ECMWF analyses) the overall agreement between 8 and 30 km altitude is in general very good with systematic differences <0.5 K in most parts of the domain. Pronounced systematic differences (exceeding 2 K) in the tropical tropopause region and above Antarctica in southern winter can almost entirely be attributed to errors in the ECMWF analyses. Errors resulting from uneven sampling in space and time are a potential error source for single-satellite climatologies. The average CHAMP sampling error for seasonal zonal means is <0.2 K, higher values occur in restricted regions and time intervals which can be clearly identified by the sampling error estimation approach we introduced (which is based on ECMWF analysis fields). The total error of this new type of temperature climatologies is estimated to be <0.5 K below 30 km. The recently launched Taiwan/U.S. FORMOSAT-3/COSMIC constellation of 6 RO satellites started to provide thousands of RO profiles per day, but already now the single-satellite CHAMP RO climatologies improve upon modern operational climatologies in the upper troposphere–lower stratosphere and can act as absolute reference climatologies for validation of more bias-sensitive climate datasets and models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号