首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   1篇
大气科学   37篇
地球物理   16篇
地质学   92篇
海洋学   12篇
天文学   6篇
自然地理   10篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   13篇
  2012年   6篇
  2011年   9篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   4篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1991年   3篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   2篇
  1968年   1篇
  1962年   1篇
排序方式: 共有173条查询结果,搜索用时 17 毫秒
101.
Comparison of tree-ring-based warm-season temperature reconstructions and their instrumental target data reveals substantial divergence between (warmer) early instrumental measurements and (colder) proxy estimates. Here we detail this systematic misfit for the Northern Hemisphere before 1900 and the European Alps before 1850. Five hypotheses related to both proxy and target uncertainties are presented towards explaining this phenomenon. These include: (1) tree-ring detrending methods, (2) biological persistence in the proxy time-series, (3) uncertainties and instabilities in the growth response to given climatic parameters, (4) reduced instrumental station availability back in time, and (5) instrumental data homogeneity. We suggest that uncertainties in the choice of instrumental targets at the hemispheric scale, and instrumental data inhomogeneities at the Alpine and possibly also the hemispheric-scale are the most important factors in explaining this offset. Assessment of homogeneity at larger scales remains challenging. Attention is drawn to possible warm biases in early thermometer shelters and the relevance of proxy/target discrepancies for understanding and quantifying the amplitude of both recent anthropogenic and past natural forced climate fluctuations.  相似文献   
102.
Ocean Dynamics - Eddies in the global and coastal ocean play a key role in mixing and transport processes. Here, we present an eddy census for the Baltic Sea covering the years 2008–2010. The...  相似文献   
103.
104.
The stratospheric ozone layer has been depleted at high and mid-latitudes as a consequence of man's pollution of the atmosphere, and this results in increasing ultraviolet-B radiation at ground level. We investigate the effects of further radiation increases on plants and ecosystems by irradiating natural sub-Arctic and Arctic vegetation with artificial UV-B radiation in field experiments extending over several years. Our experimental sites are located at Abisko, in northern Sweden (68°N), and Adventdalen, on the island of Spitsbergen (78°N). Additional UV-B induced interspecific differences in plant response in terms of reduced (or, in one case, increased) growth, changed morphology and changed pigment content. In some cases effects seem to be accumulated from one year to another. Plant litter decomposition is retarded. We are also studying how UV-B enhancement may affect the interaction between species. In some experiments we combine UV-B enhancement with changes in other factors: carbon dioxide concentration, water availability, and temperature. In some cases the effect of radiation enhancement is modified, or even reversed, by such changes. Over a four year period we did not find any significant radiation induced change in species composition, but based on the effects on individual plant species, such changes can be expected to take place over a longer time.  相似文献   
105.
106.
Black shale is often rich in sulfides and trace elements, and is thus a potential environmental threat in a manner similar to acid sulfate soils and active or abandoned sulfide mines. This study aims at characterising how exposed and processed (mined and burnt) black shale (alum shale) in Degerhamn, SE Sweden, affects the chemistry (Al, As, Ba, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Si, Na, Sr, S, U, V and Zn) of the groundwater. There were large variations in groundwater chemistry between nearby sampling points, while the temporal variations generally were small. Acidic groundwater (around pH 4), found in deposits of burnt and carbonate-poor shale where the conditions for sulfide oxidation were favourable, was strongly elevated in Al, U and several chalcophilic metals (Cd, Co, Cu, Ni and Zn). Cadmium and U were also, together with Mo, abundant in many of the near-neutral waters, both in the non-mined black shale bedrock and in the deposits of burnt shale. An extrapolation to a national level suggests that the dispersion of Ni from naturally occurring black shale is similar to that from anthropogenic point sources, while for Cd and As it is assessed to be approximately one tenth of that from point sources. The processed shale was, however, a much larger source of metals than the black shale bedrock itself, showing this material’s potential as a massive supplier of metals to the aquatic environment. A comparison of waters in contact with the processed Cambrian–Ordovician black shale in Degerhamn and acid sulfate soils of the region shows that these two sulfide-bearing materials, in many respects very different, delivers basically the same suite of trace elements to the aquatic environment. This has implications for environmental planning and protection in areas where these types of materials exist.  相似文献   
107.
Regional desertification: A global synthesis   总被引:3,自引:0,他引:3  
The paper presents results on the use of NOAA AVHRR data for desertification monitoring on a regional–global level. It is based on processing of the GIMMS 8 km global NDVI data set. Time series of annually integrated and standardized annual NDVI anomalies were generated and compared with a corresponding rainfall data set (1981–2003).The regions studied include the Mediterranean basin, the Sahel from the Atlantic to the Red Sea, major parts of the drylands of Southern Africa, China–Mongolia and the drylands of South America, i.e. important parts of the desertification prone drylands of the world.It is concluded that the suggested methodology is a robust and reliable way to assess and monitor vegetation trends and related desertification on a regional–global scale. A strong general relationship between NDVI and rainfall over time is demonstrated for considerable parts of the drylands. The results of performed trend analysis cannot be used to verify any systematic generic land degradation/desertification trend at the regional–global level. On the contrary, a “greening-up” seems to be evident over large regions.  相似文献   
108.
Calcium and magnesium concentrations in seawater have varied over geological time scales. On short time scales, variations in the major ion composition of seawater influences coccolithophorid physiology and the chemistry of biogenically produced coccoliths. Validation of those changes via controlled laboratory experiments is a crucial step in applying coccolithophorid based paleoproxies for the reconstruction of past environmental conditions. Therefore, we examined the response of two species of coccolithophores, Emiliania huxleyi and Coccolithus braarudii, to changes in the seawater Mg/Ca ratio (≈0.5 to 10 mol/mol) by either manipulating the magnesium or calcium concentration under controlled laboratory conditions. Concurrently, seawater Sr/Ca ratios were also modified (≈2 to 40 mmol/mol), while keeping salinity constant at 35. The physiological response was monitored by measurements of the cell growth rate as well as the production rates of particulate inorganic and organic carbon, and chlorophyll a. Additionally, coccolithophorid calcite was analyzed for its elemental composition (Sr/Ca and Mg/Ca) as well as isotope fractionation of calcium and magnesium (Δ44/40Ca and Δ26/24Mg). Our results reveal that physiological rates were substantially influenced by changes in seawater calcium rather than magnesium concentration within the range estimated to have occurred over the past 250 million years when coccolithophores appear in the fossil record. All physiological rates of E. huxleyi decreased at a calcium concentration above 25 mmol L−1, whereas C. braarudii displayed a higher tolerance to increased seawater calcium concentrations. Partition coefficient of Sr was calculated as 0.36 ± 0.04 (±2σ) independent of species. Partition coefficient of Mg2+ increased with increasing seawater Ca2+ concentrations in both coccolithophore species. Calcium isotope fractionation was constant at 1.1 ± 0.1‰ (±2σ) and not altered by changes in seawater Mg/Ca ratio. There is a well-defined inverse linear relationship between calcium isotope fractionation and partition coefficient of Sr2+ in all experiments, suggesting similar controls on both proxies in the investigated species. Magnesium isotope ratios were relatively stable for seawater Mg/Ca ratios ranging from 1 to 5, with a higher degree of fractionation in Emiliania huxleyi (by ≈0.2‰ in Δ26/24Mg). Although Mg/Ca ratios in the calcite of coccolithophores and foraminifera are similar, the former have considerably higher Δ26/24Mg (by >+3‰), presumably due to differences in calcification mechanisms between the two taxa. These observations suggest, a physiological control over magnesium elemental and isotopic fractionation during the process of calcification in coccolithophores.  相似文献   
109.
We present an approach for modeling facies bodies in which a highly constrained stochastic object model is used to integrate detailed seismic interpretation of the reservoir’s sedimentological architecture directly in a three-dimensional reservoir model. The approach fills the gap between the use of seismic data in a true deterministic sense, in which the facies body top and base are resolved and mapped directly, and stochastic methods in which the relationship between seismic attributes and facies is defined by conditional probabilities. The lateral geometry of the facies bodies is controlled by seismic interpretations on horizon slices or by direct body extraction, whereas facies body thickness and cross-sectional shape are defined by a mixture of seismic data, well data, and user defined object shapes. The stochastic terms in the model are used to incorporate local geometric variability, which is used to increase the geological realism of the facies bodies and allow for correct, flexible well conditioning. The result is a set of three-dimensional facies bodies that are constrained to the seismic interpretations and well data. Each body is defined as a parametric object that includes information such as location of the body axis, depositional direction, axis-to-margin normals, and external body geometry. The parametric information is useful for defining geologically realistic intrabody petrophysical trends and for controlling connectivity between stacked facies bodies.  相似文献   
110.
This paper presents combined U/Pb, Th/U and Hf isotope analyses on detrital and magmatic zircon grains together with whole-rock geochemical analyses of two basement and eight sedimentary rock samples from the Namuskluft and the Dreigratberg in southern Namibia (Gariep Belt). The sedimentary sections evolved during the Cryogenian on the SW part of the Kalahari Craton and where therefore deposited in an active rift setting during the break-up of Rodinia. Due to insufficient palaeomagnetic data, the position of the Kalahari Craton within Rodinia is still under discussion. There are possibilities to locate Kalahari along the western side of Australia/Mawsonland (Pisarevski et al. in Proterozoic East Gondwana: supercontinent assembly and break-up, Geological Society, London, 2003; Evans in Ancient Orogens and modern analogues. Geological Society, London, 2009; and others) or together with the Congo-Sao Francisco and Rio de la Plata Cratons (Li et al. in Prec Res 45: 203–2014, 2008; Frimmel et al. in Int J Earth Sci (Geol Rundsch) 100: 323–354, 2011; and others). It is sill unclear which craton rifted away from the Kalahari Craton during the Cryogenian. Although Middle to Upper Cryogenian magmatic activity is known for the SE Kalahari Craton (our working area) (Richtersveld Suite, Rosh Pinah Fm), all the presented samples show no U/Pb zircon ages younger than ca. 1.0 Ga and non-older than 2.06 Ga. The obtained U/Pb ages fit very well to the exposed basement of the Kalahari Craton (1.0–1.4 Ga Namaqua Province, 1.7–2.0 Ga Vioolsdrif Granite Suite and Orange River Group) and allow no correlation with a foreign craton such as the Rio de la Plata or Australia/Mawsonland. Lu–Hf isotopic signatures of detrital zircon point to the recycling of mainly Palaeoproterozoic and to a smaller amount of Archean crust in the source areas. εHf(t) signatures range between ?24 and +14.8, which relate to TDM model ages between 1.05 and 3.1 Ga. Only few detrital zircon grains derived from magmas generated from Mesoproterozoic crustal material show more juvenile εHf(t) signatures of +14, +8 to +4 with TDM model ages of 1.05–1.6 Ga. During Neoproterozoic deposition, only old cratonic crust with an inherited continental arc signature was available in the source area clearly demonstrated by Hf isotope composition of detrital zircon and geochemical bulk analysis of sedimentary rocks. The granodiorites of the Palaeoproterozoic basement underlying Namuskluft section are ca. 1.9 Ga old and show εHf(t) signatures of ?3 to ?5.5 with TDM model ages of 2.4–2.7 Ga. These basement rocks demonstrate the extreme uplift and deep erosion of the underlying Kalahari Craton at its western margin before general subsidence during Cryogenian and Ediacaran time. The sedimentary sequence of the two examined sections (Namuskluft and Dreigratberg) proposes the presence of a basin and an increasing subsidence at the SW part of the Kalahari Craton during the Cryogenian. Therefore, we propose the initial formation of an intra-cratonic sag basin during the Lower Cryogenian that evolved later to a rift basin at the cratonic margin due to increasing crustal tension and rifting together with the opening of the Adamastor Ocean. As the zircons of the sedimentary rocks filling this basin show neither rift-related U/Pb ages nor an exotic craton as a possible source area, the only plausible sedimentary transport direction providing the found U/Pb ages would be from the E or the SE, directly from the heart of the Kalahari Craton. Due to subsidence and ongoing sedimentation from E/SE directions, the rift-related magmatic rocks were simply covered by the input of old intra-cratonic material that explains the absence of Neoproterozoic zircon grains in our samples. The geochemical analyses show the erosion of a continental arc and related sedimentary rocks with an overall felsic provenance. The source area was a deeply eroded and incised magmatic arc that evolved on continental crust, without any evidence for a passive margin. All of this can be explained by the erosion of rocks related to the Namaqua Belt, which represents one of the two major peaks of zircon U–Pb ages in all analysed samples. Therefore, the Namaqua Belt was well exposed during the Cryogenian, available to erosion and apart from the also well-exposed Palaeoproterozoic basement of the Kalahari Craton one potential source area for the sedimentary rocks in the investigated areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号