首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   1篇
测绘学   2篇
大气科学   40篇
地球物理   28篇
地质学   99篇
海洋学   13篇
天文学   6篇
自然地理   12篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   15篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   8篇
  2008年   12篇
  2007年   5篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1991年   3篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1969年   2篇
  1968年   1篇
  1962年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有200条查询结果,搜索用时 187 毫秒
161.
International Journal of Earth Sciences - Detrital zircon provenance studies are an established tool to develop palaeogeographic models, mostly based on zircon of siliciclastic rocks and isotope...  相似文献   
162.
The influence of a summer storm event in 2007 on the North Sea and its effects on the ocean stratification are investigated using a regional coupled ocean (Regional Ocean Modeling System, ROMS)-atmosphere (Weather Research & Forecasting model, WRF) modeling system. An analysis of potential energy anomaly (PEA, Φ) and its temporal development reveals that the loss of stratification due to the storm event is dominated by vertical mixing in almost the entire North Sea. For specific regions, however, a considerable contribution of depth-mean straining is observed. Vertical mixing is highly correlated with wind induced surface stresses. However, peak mixing values are observed in combination with incoming flood currents. Depending on the phase between winds and tides, the loss of stratification differs strongly over the North Sea. To study the effects of interactive ocean-atmosphere exchange, a fully coupled simulation is compared with two uncoupled ones for the same vertical mixing parameters to identify the impact of spatial resolution as well as of SST feedback. While the resulting new mixed layer depth after the storm event in the uncoupled simulation with lower spatial and temporal resolution of the surface forcing data can still be located in the euphotic zone, the coupled simulation is capable to mix the entire water column and the vertical mixing in the uncoupled simulation with higher resolution of the surface forcing data is strongly amplified. These differences might have notable implications for ecosystem modeling since it could determine the development of new phytoplankton blooms after the storm and for sediment modeling in terms of sediment mobilization. An investigation of restratification after the extreme event illustrates the persistent effect of this summer storm.  相似文献   
163.
164.
This paper presents combined U/Pb, Th/U and Hf isotope analyses on detrital and magmatic zircon grains together with whole-rock geochemical analyses of two basement and eight sedimentary rock samples from the Namuskluft and the Dreigratberg in southern Namibia (Gariep Belt). The sedimentary sections evolved during the Cryogenian on the SW part of the Kalahari Craton and where therefore deposited in an active rift setting during the break-up of Rodinia. Due to insufficient palaeomagnetic data, the position of the Kalahari Craton within Rodinia is still under discussion. There are possibilities to locate Kalahari along the western side of Australia/Mawsonland (Pisarevski et al. in Proterozoic East Gondwana: supercontinent assembly and break-up, Geological Society, London, 2003; Evans in Ancient Orogens and modern analogues. Geological Society, London, 2009; and others) or together with the Congo-Sao Francisco and Rio de la Plata Cratons (Li et al. in Prec Res 45: 203–2014, 2008; Frimmel et al. in Int J Earth Sci (Geol Rundsch) 100: 323–354, 2011; and others). It is sill unclear which craton rifted away from the Kalahari Craton during the Cryogenian. Although Middle to Upper Cryogenian magmatic activity is known for the SE Kalahari Craton (our working area) (Richtersveld Suite, Rosh Pinah Fm), all the presented samples show no U/Pb zircon ages younger than ca. 1.0 Ga and non-older than 2.06 Ga. The obtained U/Pb ages fit very well to the exposed basement of the Kalahari Craton (1.0–1.4 Ga Namaqua Province, 1.7–2.0 Ga Vioolsdrif Granite Suite and Orange River Group) and allow no correlation with a foreign craton such as the Rio de la Plata or Australia/Mawsonland. Lu–Hf isotopic signatures of detrital zircon point to the recycling of mainly Palaeoproterozoic and to a smaller amount of Archean crust in the source areas. εHf(t) signatures range between ?24 and +14.8, which relate to TDM model ages between 1.05 and 3.1 Ga. Only few detrital zircon grains derived from magmas generated from Mesoproterozoic crustal material show more juvenile εHf(t) signatures of +14, +8 to +4 with TDM model ages of 1.05–1.6 Ga. During Neoproterozoic deposition, only old cratonic crust with an inherited continental arc signature was available in the source area clearly demonstrated by Hf isotope composition of detrital zircon and geochemical bulk analysis of sedimentary rocks. The granodiorites of the Palaeoproterozoic basement underlying Namuskluft section are ca. 1.9 Ga old and show εHf(t) signatures of ?3 to ?5.5 with TDM model ages of 2.4–2.7 Ga. These basement rocks demonstrate the extreme uplift and deep erosion of the underlying Kalahari Craton at its western margin before general subsidence during Cryogenian and Ediacaran time. The sedimentary sequence of the two examined sections (Namuskluft and Dreigratberg) proposes the presence of a basin and an increasing subsidence at the SW part of the Kalahari Craton during the Cryogenian. Therefore, we propose the initial formation of an intra-cratonic sag basin during the Lower Cryogenian that evolved later to a rift basin at the cratonic margin due to increasing crustal tension and rifting together with the opening of the Adamastor Ocean. As the zircons of the sedimentary rocks filling this basin show neither rift-related U/Pb ages nor an exotic craton as a possible source area, the only plausible sedimentary transport direction providing the found U/Pb ages would be from the E or the SE, directly from the heart of the Kalahari Craton. Due to subsidence and ongoing sedimentation from E/SE directions, the rift-related magmatic rocks were simply covered by the input of old intra-cratonic material that explains the absence of Neoproterozoic zircon grains in our samples. The geochemical analyses show the erosion of a continental arc and related sedimentary rocks with an overall felsic provenance. The source area was a deeply eroded and incised magmatic arc that evolved on continental crust, without any evidence for a passive margin. All of this can be explained by the erosion of rocks related to the Namaqua Belt, which represents one of the two major peaks of zircon U–Pb ages in all analysed samples. Therefore, the Namaqua Belt was well exposed during the Cryogenian, available to erosion and apart from the also well-exposed Palaeoproterozoic basement of the Kalahari Craton one potential source area for the sedimentary rocks in the investigated areas.  相似文献   
165.
Finely cellular plagioclase intergrowths have been studied in xenocrystic andesine (An32) and andesine mantled K-feldspars within mafic magmatic enclaves in a quartz-feldspar porphyry from the Proterozoic subvolcanic Hammarudda complex, Åland rapakivi batholith, SW Finland. The cellular intergrowths usually occur as 0.2–2.0 mm mantles around xenocrysts but also as entirely cellular grains, and are built up of a network of two distinct phases: one relatively Na-rich (An31) and one relatively Ca-rich (An50). The grains are also covered by a thin (0.08–0.12 mm), continuous, normally zoned rim outside the cellular mantle. Small inclusions (0.01–0.05 mm) of Fe–Mg minerals are concentrated in the Ca-rich part of the network. Compositionally, the Na-rich phase of the network is close to the inner non-cellular andesine of the xenocrysts. However, it has a lower Or- and a slightly lower An-content. The Ca-rich phase has the same composition as the inner part of the normally zoned rim, which outwards grades into lower An-contents that overlap the An-content of the matrix plagioclases. The cellular network was developed after the andesine xenocrysts (or andesine mantled K-feldspars) were engulfed in mafic magmatic enclaves during a mixing event. The xenocrysts became heated to a temperature just below the liquidus of the mafic magma. Dissolution of the xenocrysts developed a spongy cellular texture which was penetrated by enclave magma. Ca-rich plagioclase crystallized in the cells in equilibrium with the enclave magma, trapping Fe–Mg-rich melt. As the enclaves cooled the outermost thin rim and matrix plagioclases crystallized from the mafic melt. These processes operated in fairly large enclaves, as the one studied here, which has a diameter of 70cm. Smaller enclaves, on the other hand, were cooled more rapidly to temperatures close to the solidus of the enclave magma, and consequently had no time to dissolve the xenoxrysts.  相似文献   
166.
Acanthoceratid ammonites from near Maceió, in the State of Alagoas, provide evidence of a mid-Cretaceous marine incursion into the present onshore part of the Alagoas Basin. The ammonites Pseudocalycoceras sp. cf. P. harpax (Stoliczka, 1864) and Kamerunoceras sp. are assigned a late Cenomanian age. The rock is a siliceous oolite that occurs as derived nodules and fragments in late Cenozoic continental sediments. It is interpreted as an originally calcareous oolite formed in a near-shore, high-energy environment. Absence of primary cement suggests that silicification took place early in diagenesis. The silicified, and therefore more resistant material from the original Cenomanian sequence was reworked and redeposited with the Cenozoic sediments. The age, indicated by the ammonites, suggests that the original deposition was related to the global late Cenomanian—early Turonian sea-level rise.  相似文献   
167.
The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator–prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.  相似文献   
168.
169.
More than 100 volcanic necks composed of basanites and melanephelinites occur in Scania, southern Sweden, at the junction of two major tectonic lineaments, the Phanerozoic Sorgenfrei-Tornquist Zone (STZ) and the Proterozoic Protogine Zone. New 40Ar/39Ar isotope analyses of whole rock fragments of nine selected basalt necks suggest that the Mesozoic alkaline volcanism in the Scanian province commenced earlier than previously reported and comprised three separate volcanic episodes that span a total period of ca. 80 Myr: a first Jurassic (191–178 Ma), a second at the Jurassic/Cretaceous boundary (ca. 145 Ma), and a final middle Cretaceous episode (ca. 110 Ma). The new results allow for precise time correlations between eruption events in the Scanian and those in the North Sea volcanic provinces. The older, early Jurassic event in Scania is largely synchronous with that in the Egersund Basin and the Forties field whereas the event at ca. 145 Ma is correlated with activity in the Central Graben. These volcanic episodes also correlate in age with Kimmerian tectonic activity. Volcanic activity in the middle Cretaceous period has also been dated in the triple junction in the North Sea and offshore in the Netherland Sector. The correlation of basalt volcanism in Scania with the Egersund nephelinites strongly suggest that volcanism was triggered by repeated tectonic activity along the STZ. Geochemical data of alkaline mafic rocks in the Scanian and the North Sea volcanic provinces imply that different provinces have largely unique geochemical signatures in favour of a heterogeneous mantle in the North Sea volcanic region. However, basalts of different generations in one and the same province cannot be readily separated on the basis of geochemistry, suggesting that the same lithospheric mantle was the source of repeated volcanism over time in each province. The data suggest a low degree of melting of a volatile-bearing mantle lherzolite enriched in incompatible elements with the exception of the Forties basalts in the rift centre, produced by larger degree of melting and evolved by fractional crystallization.  相似文献   
170.
Dissolved (<1 kDa), colloidal (1 kDa–0.45 μm) and particulate (>0.45 μm) size fractions of 30 elements were determined for four rivers (Sirppujoki, Laajoki, Mynäjoki and Paimionjoki), including 12 low-order inflow streams, largely affected by soil erosion and acidity in SW Finland. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these rivers. Total metal concentrations were relatively high but most of the elements occurred mainly in a colloidal or particulate form and even elements expected to be very soluble occurred to a large extent in colloidal form. According to geochemical modelling these patterns could be explained by in-stream metal complexation/adsorption only to a limited extent. Instead there were strong indications that the high metal concentrations and dominant solid fractions were largely caused by erosion of metal bearing phyllosilicates. A strong influence of acid sulphate (AS) soils, known to exist in the catchment, could be clearly distinguished in Sirppujoki river as it had very high concentrations of dissolved metals, while in the two nearby rivers (Laajoki and Mynäjoki) the influence of AS soils was largely masked by eroded phyllosilicates. In Paimionjoki river the colloidal and particulate fractions dominated very strongly, indicating that total metal concentrations are almost solely controlled by erosion of phyllosilicates. Consequently, rivers draining clay plains sensitive to erosion, like those in SW Finland, have generally high “background” metal concentrations due to erosion of relatively non-toxic colloidal/particulate phyllosilicates. Thus, relying on only semi-dissolved (<0.45 μm) concentrations obtained in routine monitoring and/or speciation modelling can lead to a great overestimation of the water toxicity in this environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号