全文获取类型
收费全文 | 175篇 |
免费 | 1篇 |
专业分类
大气科学 | 37篇 |
地球物理 | 17篇 |
地质学 | 94篇 |
海洋学 | 12篇 |
天文学 | 6篇 |
自然地理 | 10篇 |
出版年
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 3篇 |
2018年 | 6篇 |
2017年 | 3篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 4篇 |
2013年 | 13篇 |
2012年 | 6篇 |
2011年 | 9篇 |
2010年 | 10篇 |
2009年 | 8篇 |
2008年 | 11篇 |
2007年 | 4篇 |
2006年 | 4篇 |
2005年 | 9篇 |
2004年 | 5篇 |
2003年 | 7篇 |
2002年 | 6篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1996年 | 4篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 5篇 |
1991年 | 3篇 |
1989年 | 4篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1978年 | 3篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1962年 | 1篇 |
排序方式: 共有176条查询结果,搜索用时 15 毫秒
21.
In this paper we review the possibilities for
magnetohydrodynamic processes to handle the angular momentum transport
in accretion disks. Traditionally the angular momentum transport has
been considered to be the result of turbulent viscosity in the disk,
although the Keplerian flow in accretion disks is linearly stable towards
hydrodynamic perturbations. It is on the other hand linearly unstable
to some magnetohydrodynamic (MHD) instabilities.
The most important instabilities are the Parker and Balbus-Hawley
instabilities that are related to the magnetic buoyancy and the shear
flow, respectively. We discuss these instabilities not only in the
traditional MHD framework, but also in the context of slender flux
tubes, that reduce the complexity of the problem while keeping most of
the stability properties of the complete problem. In the non-linear
regime the instabilities produce turbulence. Recent numerical
simulations describe the generation of magnetic fields by a dynamo in
the resulting turbulent flow. Eventually such a dynamo may generate a
global magnetic field in the disk. The relation of the MHD-turbulence
to observations of accretion disks is still obscure. It is commonly
believed that magnetic fields can be highly efficient in transporting
the angular momentum, but emission lines, short-time scale variability
and non-thermal radiation, which a stellar astronomer would take as
signs of magnetic variability, are more commonly observed during periods
of low accretion rates.
Received October 12, 1995 / Accepted November 16, 1995 相似文献
22.
23.
Due to the climate change, vegetation of tundra ecosystems is predicted to shift toward shrub and tree dominance, and this change may influence bryophytes. To estimate how changes in growing environment and the dominance of vascular plants influence bryophyte abundance, we compared the relationship of occurrence of bryophytes among other plant types in a five-year experiment of warming (T), fertilization (F) and T + F in two vegetation types, heath and meadow, in a subarctic–alpine ecosystem. We compared individual leaf area among shrub species to confirm that deciduous shrubs might cause severe shading effect. Effects of neighboring functional types on the performance of Hylocomium splendens was also analyzed.Results show that F and T + F treatments significantly influenced bryophyte abundance negatively. Under natural conditions, bryophytes in the heath site were negatively related to the abundance of shrubs and lichens and the relationship between lichens and bryophytes strengthened after the experimental period. After five years of experimental treatments in the meadow, a positive abundance relationship emerged between bryophytes and deciduous shrubs, evergreen shrubs and forbs. This relationship was not found in the heath site. Our study therefore shows that the abundance relationships between bryophytes and plants in two vegetation types within the same area can be different. Deciduous shrubs had larger leaf area than evergreen shrubs but did not show any shading effect on H. splendens. 相似文献
24.
25.
Turbulent characteristics of a 50 to 100 m deep convective internal boundary layer (I.B.L.) have been studied. The data were gathered at a flat coastal site (Näsudden on the island of Gotland, Sweden) during three consecutive days in May 1980 which were characterized by a steady, very stable stratified marine approach flow. The site is situated on a flat area ca. 1500 m from the shoreline. Only daytime runs have been analysed in the present paper. The sensible heat flux at the ground was typically 200 W m-2 and was found to decrease more or less linearly with height throughout the I.B.L., being slightly negative at greater heights. The momentum flux was also found to decrease with height, but nevertheless shear production of turbulent kinetic energy was found to be large throughout the entire I.B.L. The analysis shows that the turbulent regime has a mixed character. Certain characteristics, such as the rate of growth of the I.B.L., appear to be almost entirely controlled by mechanical turbulence, while others, notably temperature variance and the spectrum of vertical velocity, scale remarkably well with w * and z i, in accordance with the results found in fully convective conditions during the experiments at Minnesota and Aschurch. Other turbulent characteristics, such as spectra of the horizontal wind components measured near the top of the I.B.L. tend to adhere to mixed-layer scaling in the high frequency range, exhibiting much increased energy in the lower (reduced) frequency range. Spectra of the velocity components from 10 m are shown to be in general agreement with findings from ‘ideal’, homogeneous sites (Kansas) when properly normalized, although the low frequency part of u- and v-spectra are slightly reduced compared to the case with deep convection. 相似文献
26.
27.
The Glueckstadt Graben of the North-German Basin: new insights into the structure from 3D and 2D gravity analyses 总被引:1,自引:0,他引:1
Tamara Yegorova Yuriy Maystrenko Ulf Bayer Magdalena Scheck-Wenderoth 《International Journal of Earth Sciences》2008,97(5):915-930
The structure of the Glueckstadt Graben has been investigated by use of 3D gravity backstripping technique and by 2D gravity
and magnetic modelling. Subtracting the gravity effects of the Meso-Cenozoic sediments together with Permian salt reveals
a positive residual anomaly within the Glueckstadt Graben. This anomaly includes two local maxima over the Westholstein and
Eastholstein Troughs. The 2D gravity models point to the presence of a high-density body within the lower crust of the Glueckstadt
Graben. In addition, the results of 2D magnetic modelling indicate that the central part of the high-density body is overlain
by an area with high susceptibility. Most probable, the formation of this high-density body is a result of complex poly-phase
tectonic history of the study area. Finally, the results of gravity modelling indicate that Permian salt is not homogeneous.
3D gravity analysis and, especially, 2D gravity modelling have distinguished the differences in degree of salt saturation
in salt-rich bodies, and elucidate the proportion of Rotliegend salt. 相似文献
28.
Nikolaus Gussone Gerald Langer Markus Geisen Blair A. Steel Ulf Riebesell 《Earth and Planetary Science Letters》2007,260(3-4):505-515
Four species of marine calcifying algae, the coccolithophores Calcidiscus leptoporus, Helicosphaera carteri, Syracosphaera pulchra and Umbilicosphaera foliosa were grown in laboratory cultures under temperatures varying between 14 and 23 °C, and one species, C. leptoporus, under varying [CO32−], ranging from 105 to 219 μmol/kg. Calcium isotope compositions of the coccoliths resemble in both absolute fractionation and temperature sensitivity previous calibrations of marine calcifying species e.g. Emiliania huxleyi (coccolithophores) and Orbulina universa (planktonic foraminifera) as well as inorganically precipitated CaCO3, but also reveal small species specific differences. In contrast to inorganically precipitated calcite, but similar to E. huxleyi and O. universa, the carbonate ion concentration of the medium has no statistically significant influence on the Ca isotope fractionation of C. leptoporus coccoliths; however, combined data of E. huxleyi and C. leptoporus indicate that the observed trends might be related to changes of the calcite saturation state of the medium. Since coccoliths constitute a significant portion of the global oceanic CaCO3 export production, the Ca isotope fractionation in these biogenic structures is important for defining the isotopic composition of the Ca sink of the ocean, one of the key parameters for modelling changes to the marine Ca budget over time. For the present ocean our results are in general agreement with the previously postulated and applied mean value of the oceanic Ca sink (Δsed) of about − 1.3‰, but the observed inter- and intra-species differences point to possible changes in Δsed through earth history, due to changing physico-chemical conditions of the ocean and shifts in floral and faunal assemblages. 相似文献
29.
Natalia V. Lubnina Satu Mertanen Ulf Söderlund Svetlana Bogdanova Tatiana I. Vasilieva Dmitry Frank-Kamenetsky 《Precambrian Research》2010
Palaeomagnetic and geochronological studies on mafic rocks in the Lake Ladoga region in South Russian Karelia provide a new, reliably dated Mesoproterozoic key paleopole for the East European Craton (Baltica). U–Pb dating on baddeleyite gives a crystallisation age of 1452 ± 12 Ma for one of the studied dolerite dykes. A mean palaeomagnetic pole for the Mesoproterozoic dolerite dykes, Valaam sill and Salmi basalts yields a paleopole at 15.2°N, 177.1°E, A95 = 5.5°. Positive baked contact test for the dolerite dykes and positive reversal test for the Salmi basalts and for the dykes confirm the primary nature of the magnetisation. Comparison of this Baltica palaeopole with coeval paleomagnetic data for Laurentia and Siberia provides a revised palaeoposition of these cratons. The results verify that the East European Craton, Laurentia and Siberia were part of the supercontinent Columbia from the Late Palaeoproterozoic to the Middle Neoproterozoic. 相似文献
30.
Ulf Gräwe 《Ocean Modelling》2011,36(1-2):80-89
Stochastic differential equations (SDEs) offer an attractively simple solution to complex transport-controlled problems, and have a wide range of physical, chemical, and biological applications, which are dominated by stochastic processes, such as diffusion. As for deterministic ordinary differential equations (ODEs), various numerical scheme exist for solving SDEs. In this paper various particle-tracking schemes are presented and tested for accuracy and efficiency (time vs. accuracy). To test the schemes, the particle tracking algorithms are implemented into a community wide used 1D water column model. Modelling individual particles allows a straightforward physical interpretation of the involved processes. Further, this approach is strictly mass conserving and does not suffer from the numerical diffusion that plagues grid-based methods. Moreover, the Lagrangian framework allows to assign properties to the individual particles, that can vary spatially and temporally. The movement of the particles is described by a stochastic differential equation, which is consistent with the advection–diffusion equation. Here, the concentration profile is represented by a set of independent moving particles, which are advected according to the velocity field, while the diffusive displacements of the particles are sampled from a random distribution, which is related to the eddy diffusivity field.The paper will show that especially the 2nd order schemes are accurate and highly efficient. At the same level of accuracy, the 2nd order scheme can be significantly faster than the 1st order counterpart. This gain in efficiency can be spent on a higher resolution for more accurate solutions at a lower cost. 相似文献