首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   9篇
  国内免费   29篇
测绘学   1篇
大气科学   8篇
地球物理   56篇
地质学   137篇
海洋学   26篇
天文学   9篇
综合类   2篇
自然地理   6篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   10篇
  2017年   13篇
  2016年   6篇
  2015年   9篇
  2014年   5篇
  2013年   11篇
  2012年   4篇
  2011年   9篇
  2010年   12篇
  2009年   17篇
  2008年   19篇
  2007年   16篇
  2006年   5篇
  2005年   7篇
  2004年   10篇
  2003年   11篇
  2002年   5篇
  2001年   6篇
  2000年   7篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有245条查询结果,搜索用时 62 毫秒
121.
The mechanisms of formation and disruption of supercontinents have been topics of debate. Based on the Y-shaped topology, we identify two major types of subduction zones on the globe: the Circum-Pacific subduction zone and the Tethyan subduction zone. We propose that the process of formation of supercontinents is controlled by super downwelling that develops through double-sided subduction zones as seen in the present day western Pacific, and also as endorsed by both geologic history and P-wave whole mantle tomography. The super-downwelling swallows all material like a black hole in the outer space, pulling together continents into a tight assembly. The fate of supercontinents is dictated by superplumes (super-upwelling) which break apart the continental assemblies. We evaluate the configuration of major supercontinents through Earth history and propose the tectonic framework leading to the future supercontinent Amasia 250 million years from present, with the present day Western Pacific region as its frontier. We propose that the tectosphere which functions as the buoyant keel of continental crust plays a crucial role in the supercontinental cycle, including continental fragmentation, dispersion and amalgamation. The continental crust is generally very thin, only about one tenth of the thickness of the tectosphere. If the rigidity and buoyancy is derived from the tectosphere, with the granitic upper crust playing only a negligible role, then supercontinent cycle may reflect the dispersion and amalgamation of the tectosphere. Therefore, supercontinent cycle may correspond to super-tectosphere cycle.  相似文献   
122.
The growth curve of the continental crust shows that large amounts of continental crust formed in the early part of the Earth history are missing. In order to test a hypothesis that the former crust was subducted to the deep mantle, we performed phase assemblage analysis in the systems of mid-oceanic ridge basalt (MORB), anorthosite, and tonalite–trondhjemite–granite (TTG) down to the core–mantle boundary (CMB) conditions. Results show that all these materials can be subducted to the CMB leading to the development of a compositional layering in the D″ layer. We speculate that there could be five layers of FeO-enriched melt from partial melting of MORB, MORB crust, anorthosite, TTG, and slab or mantle peridotite in ascending order. Although the polymorphic transformation of perovskite to post-perovskite in (Mg,Fe)SiO3 may explain the seismic discontinuity at the top of the D″ layer (D″ discontinuity), the effects of solid solution on the sharpness of the transformation suggest that the compositional layering is more plausible for the origin of the D″ discontinuity. The D″ layer can be an “anti-crust” made up mostly of TTG + anorthosite derived from the former continental crust. Tectonic style of the anti-crust at the CMB is similar to that at the surface. At both places, chemically distinct layers are density stratified and are also characterized by the processes of accretion, magmatism, and metasomatism.  相似文献   
123.
A prograde pressure–temperature (P–T) path is estimated for pelitic schists from the latest Precambrian Kokchetav ultrahigh-pressure massif, Kazakhstan, using compositional zoning and mineral inclusions in coarse-grained and inclusion-rich garnets. Ti-bearing inclusions are abundant in garnet and display a zonal distribution. Ilmenite occurs in the inner-core, where most of it makes a composite inclusion with rutile, whereas monomineralic rutile occurs in the outer-core to mantle domains. In the rim region both ilmenite and rutile are present, although in small amounts. Application of the ilmenite-garnet thermometer yields a systematic temperature increase towards rim from 500 to 750 °C. The pressure-sensitive reaction: 3 Fe-Ilm (in Ilm) + Ky + 2 Qtz = 3 Rt + Alm (in Grt) yielded pressures of 1.2–1.3 GPa for the outer-core inclusions.A petrogenetic grid in the K2O–CaO–FeO–MgO–Al2O3–SiO2–H2O model system was used to estimate the equilibrium compositions of the garnet. The change of the grossular component along the model P–T path expected from the forward modelling is close to the observed compositional profile of the outer-core to rim domains. No constraint is available from thermobarometry in the inner-core; however, the forward modelling of garnet zoning provides information on the early stage of the P–T path during the garnet growth.The estimated P–T path is counter-clockwise in the prograde stage with a steep bend at around 700 °C and 1.2–1.5 GPa. This is similar to the metamorphic P–T gradient of the Kokchetav massif. This result contrasts markedly with the traditional clockwise P–T path in many collisional metamorphic terranes, and is regarded to represent a subduction geotherm at the Precambrian–Cambrian boundary. The P–T path proposed in this study also supports the models for the recovery of the “snowball Earth” from late-Proterozoic glaciation through effect of water in the solid Earth mantle.  相似文献   
124.
125.
The Izu-Bonin intra-oceanic arc with 20–35 km thick continental crust is being subducted under the Honshu, presumably since 17 Ma. Tomographic image clearly demonstrates that the whole Izu-Bonin arc is subducting under the Honshu arc. Geologic cross section and the thickness of continental crust do not support the accretion of thick crust in spite of the continued subduction over 17 Ma.  相似文献   
126.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   
127.
Combined determination of Cr and Ti isotopes of planetary materials offers a means with which to investigate their genetic relationship and the evolution of the protoplanetary disk. Here, we report the new sequential chemical separation procedure for combined Cr and Ti isotope ratio measurements. It comprises three steps: (a) Fe removal using AG1‐X8 anion exchange resin, (b) Ti separation using TODGA resin and (c) Cr separation using AG50W‐X8 cation exchange resin (with one additional step of Ti purification using AG1‐X8 anion exchange resin for samples having high Cr/Ti and Ca/Ti ratios). We applied the proposed procedure to terrestrial and meteorite samples with various compositions. Typical recovery rates of 90–100% were achieved with total procedural Cr and Ti blanks of 3–5 and 2–3 ng, respectively. We measured the Cr and Ti isotope compositions of the separated samples using thermal ionisation mass spectrometry and multiple collector‐inductively coupled plasma‐mass spectrometry, respectively. Our Cr and Ti isotope data were found to be consistent with those of previous studies of individual Cr and Ti isotopic compositions of the meteorites. These results demonstrate the capability of our separation method when applied to combined high‐precision Cr and Ti isotope analyses for single digests of planetary materials.  相似文献   
128.
129.
ALHA 76005 is a basaltic achondrite containing few. if any, orthopyroxenes. Its bulk major and trace element composition is like that of a non-cumulate eucrite, and unlike that of a howardite. It contains a variety of igneous clasts which differ in their textures, pyroxene/plagioclase ratios and pyroxene and plagioclase compositions. One clast, No. 4, was found to have the REE pattern of a cumulate eucrite and an oxygen isotopic composition different from that of the bulk meteorite. Both the chemical and oxygen isotopic composition of clast No. 4 suggest that it was derived from a source different from its host. These observations lead to the conclusion that ALHA 76005 is a polymict eucrite.  相似文献   
130.
中国西北帕米尔东北缘的活动断裂研究   总被引:7,自引:0,他引:7  
在卫星遥感图像的详细地质解译分析基础上,结合野外地质与地貌观察,对帕米尔东北缘山前与印度-亚欧大陆碰撞相关的活动断层进行了分析。研究结果指出,NW-NWW走向的断层主要表现为南倾逆冲断层,并伴随有强烈的右旋走滑分量。流经活动断层带的水系显示出右旋累积位错:小水系的水平位错量为4.0-20.0m,大河流的水平位错量达8-12km。沿断层带的上新世至早更新世地层也显示出一致的水平位错,位错量为8-12km。这些证明表明,帕米尔东南山前的NW-NWW走向的断层很可能开始于上新世末期至早更新世早期(2.2-3Ma)。研究结果首次厘定了帕米尔东北缘山前与向北逆冲相伴随的右旋走滑速率在第四纪期间达4.0-6.8mm/a。根据与现代地震活动相关的活断层分析,推测帕米尔东北缘山前7级以上地震重复周期为1000a左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号