首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   9篇
  国内免费   11篇
测绘学   1篇
大气科学   7篇
地球物理   35篇
地质学   84篇
海洋学   17篇
天文学   8篇
综合类   4篇
自然地理   5篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   9篇
  2012年   3篇
  2011年   12篇
  2010年   10篇
  2009年   3篇
  2008年   15篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有161条查询结果,搜索用时 140 毫秒
91.
A software prototype of a simulation service software environment, called DOSE (distributed object‐based software environment), is developed to realize the integrated simulation of an urban system under the risk of urban‐scale hazards such as earthquakes. DOSE infrastructure is built on three basic building blocks, namely: modularity, scalability, and interoperability. In this paper, the application of DOSE to real‐world urban systems is described in order to provide an evidence for DOSE modularity and scalability. An overview of DOSE is presented and then followed by a beverage application to simulate earthquake hazard in an urban system. The urban system is developed for the city of Kobe (Kobe district) with dimensions of 700 × 500 (m) and Bunkyo ward (Tokyo district) with dimensions of 800 × 600 (m) where DOSE simulation participants are identified for each district. The effectiveness of data exchange among different participants through a distributed service exchange network is described as an evidence for DOSE modularity that facilitates the integration process. On the other hand, the effectiveness of processing time when applying the simulation to different urban system sizes and/or using different third‐party applications is described as an evidence for DOSE scalability. The details of the underlying infrastructure of DOSE are beyond the scope of this paper and are presented in an accompanying paper work. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
92.
The western Pacific region has been refrigerated by the subducting cold oceanic plates since 450 Ma. However, the region is also characterized by the presence of many oceanic microplates less than 1300 km across, as well as active magmatism; the Philippine Sea plate is representative. We have compiled and examined petrochemical characters of drilled basalts of DSDP from the Philippine Sea plate, and conclude that the source mantle for oceanic basalts is rich in water ca. 0.2 wt.%, and is 50–60 °C lower than that for MORB. The extensive melting is due to the high water content in the source mantle.It is well known that some marginal basins apparently have greater depths than the major oceans. We calculated the age–depth correlation based on a model of transient half-space cooling at given parameters of temperatures of mantle and surface, 1280 and 0 °C, and the thermal diffusivity, 1 mm2 s− 1. The calculation shows the correlation of age-residual depth from a mid-oceanic ridge is 367 for the Philippine Sea, consistent with the bathymetric data. Moreover, the mid-oceanic ridge may be relatively deep because this region is underlain by the cooler mantle.Addition of water to the mantle peridotite lowers the solidus temperature and viscosity. Melting experiments of hydrous peridotite show that addition of 0.2 wt.% H2O content lowers the solidus temperature by 150 °C. As a result, the mantle under the region may practically correspond to a ca. 90 °C hotter mantle than normal MORB-source mantle in terms of magmatism and rheology. Numerical simulation for a hotter mantle suggests that many small plates should be formed because of extensive heat release by active magmatism, consistent with many microplates in this region. The presence of many oceanic microplates may be analogous to Archean plate tectonics, characterized by a hotter mantle.  相似文献   
93.
Lithological and geochemical features of platformal carbonates record the signatures of the global climates and the regional environmental settings and also reconstruct the diagenetic history and porosity evolution, which are essential to evaluate the potential of hydrocarbon reservoirs. This study investigates the platformal carbonates of the Oligo‐Miocene Krunji Formation of North East Java Basin, which are potentially significant hydrocarbon reservoirs. The carbonate sequence in a 283 m thick section at Kranji in East Java is subdivided into three lithological units: limestone unit 1, dolostone unit 2, and limestone unit 3, in ascending order. The strontium‐isotope ratios of well‐preserved calcite samples indicate the depositional period from Chattian (late Oligocene) to Burdigalian (early Miocene), which is consistent with ages of the foraminifer assemblages. Unit 1 consists of low‐porosity limestone, in which two horizons of subaerial exposure are recognized by the occurrence of red‐colored matrix and lower δ13C values. Unit 2 consists of dolomitic rock and exhibits coarse‐grained calcitic grains and cross‐stratified structure. Considering that this unit has been subject to dolomitization, the sediment of unit 2 was initially permeable and was likely deposited in a shoal setting. The overlying unit 3 of Aquitanian–Burdigalian age is characterized by a highly granular texture. High porosity and uniformly low δ13C and δ18O values indicate that Unit 3 was subjected to more intense meteoric diagenesis than the Chattian unit 1. This was likely a consequence of the Antarctic ice‐sheet expansion during the Oligocene/Miocene transition, which amplified sea level change. The unit 2 dolomite has high δ13C and δ18O values and a high 87Sr/86Sr ratio which resulted from the reflux of seawater into permeable the sediment body in middle‐late Miocene (Burdigalian Tortonian) following the deposition of unit 3. The porosity and permeability of the Kujung Formation were initially controlled by sedimentological processes, but largely modified by later diagenetic processes.  相似文献   
94.
哈密盆地北线活动断裂带走向北西西,断续长180km。8条剖面的GPS测量结果显示,断坎坡度为15°~18°及31°~33°.单个断崖高3~10m。由年代学资料计算出该断裂带中全新世垂直活动速率为0.65±0.08mm/a,比晚更新世晚期垂直活动速率有所增大。  相似文献   
95.
Continental recycling and true continental growth   总被引:1,自引:0,他引:1  
Continental crust is very important for evolution of life because most bioessential elements are supplied from continent to ocean. In addition, the distribution of continent affects climate because continents have much higher albedo than ocean, equivalent to cloud. Conventional views suggest that continental crust is gradually growing through the geologic time and that most continental crust was formed in the Phanerozoic and late Proterozoic. However, the thermal evolution of the Earth implies that much amounts of continental crust should be formed in the early Earth. This is “Continental crust paradox”.Continental crust comprises granitoid, accretionary complex, and sedimentary and metamorphic rocks. The latter three components originate from erosion of continental crust because the accretionary and metamorphic complexes mainly consist of clastic materials. Granitoid has two components: a juvenile component through slab-melting and a recycling component by remelting of continental materials. Namely, only the juvenile component contributes to net continental growth. The remains originate from recycling of continental crust. Continental recycling has three components: intracrustal recycling, crustal reworking, and crust–mantle recycling, respectively. The estimate of continental growth is highly varied. Thermal history implied the rapid growth in the early Earth, whereas the present distribution of continental crust suggests the slow growth. The former regards continental recycling as important whereas the latter regarded as insignificant, suggesting that the variation of estimate for the continental growth is due to involvement of continental recycling.We estimated erosion rate of continental crust and calculated secular changes of continental formation and destruction to fit four conditions: present distribution of continental crust (no continental recycling), geochronology of zircons (intracontinental recycling), Hf isotope ratios of zircons (crustal reworking) and secular change of mantle temperature. The calculation suggests some important insights. (1) The distribution of continental crust around at 2.7 Ga is equivalent to the modern amounts. (2) Especially, the distribution of continental crust from 2.7 to 1.6 Ga was much larger than at present, and the sizes of the total continental crust around 2.4, 1.7, and 0.8 Ga became maximum. The distribution of continental crust has been decreasing since then. More amounts of continental crust were formed at higher mantle temperatures at 2.7, 1.9, and 0.9 Ga, and more amounts were destructed after then. As a result, the mantle overturns led to both the abrupt continental formation and destruction, and extinguished older continental crust. The timing of large distribution of continental crust apparently corresponds to the timing of icehouse periods in Precambrian.  相似文献   
96.
A high-resolution (T213) coupled ocean–atmosphere general circulation model (CGCM) has been used to examine the relationship between El Niño/Southern Oscillation (ENSO) and tropical cyclone (TC) activity over the western North Pacific (WNP). The model simulates ENSO-like events similar to those observed, though the amplitude of the simulated Niño34 sea surface temperature (SST) anomaly is twice as large as observed. In El Niño (La Niña) years, the annual number of model TCs in the southeast quadrant of the WNP increases (decreases), while it decreases (increases) in the northwest quadrant. In spite of the significant difference in the mean genesis location of model TCs between El Niño and La Niña years, however, there is no significant simultaneous correlation between the annual number of model TCs over the entire WNP and model Niño34 SST anomalies. The annual number of model TCs, however, tends to decrease in the years following El Niño, relating to the development of anticyclonic circulation around the Philippine Sea in response to the SST anomalies in the central and eastern equatorial Pacific. Furthermore, it seems that the number of model TCs tends to increase in the years before El Niño. It is also shown that the number of TCs moving into the East Asia is fewer in October of El Niño years than La Niña years, related to the anomalous southward shift of mid-latitude westerlies, though no impact of ENSO on TC tracks is found in other months. It is found that model TCs have longer lifetimes due to the southeastward shift of mean TC genesis location in El Niño years than in La Niña years. As the result of longer fetch of TCs over warm SST, model TCs appear to be more intense in El Niño years. These relationships between ENSO and TC activity in the WNP are in good agreement with observational evidence, suggesting that a finer-resolution CGCM may become a powerful tool for understanding interannual variability of TC activity.  相似文献   
97.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   
98.
The response of planktonic bacteria and phytoplankton to various additions of dissolved organic carbon (DOC) as glucose, with and without inorganic nutrients (nitrogen and phosphorus), was tested in the upper to mid Hunter Estuary, Australia. In situ microcosms (1.25 L) were performed at two sites with varying salinities over three seasons. Analysis of variance showed a significant difference among control and treatments for all seasons for the bacterial, dissolved oxygen and chlorophyll a responses (P < 0.05). A significant interaction between treatment and site was found in autumn for dissolved oxygen, autumn and spring for bacterial and spring for chlorophyll a responses. At both sites for each season, and on nearly all occasions, bacterial surface area was enhanced by DOC addition as indicated by both increased bacterial abundance and dissolved oxygen utilisation. DOC in combination with inorganic nutrients sometimes further enhanced the bacterial response compared to DOC alone. Inorganic nutrients alone did not enhance growth of the heterotrophic bacterioplankton. Addition of DOC alone led to decreased chlorophyll a relative to the control, probably due to competition for limited inorganic nutrients with the bacterioplankton DOC non-limiting conditions. Results suggest that the heterotrophic community was limited by DOC at both sites and across seasons. An experiment with a larger volume (70 L), performed over a longer time, compared a control with DOC addition. Increased bacterial biomass as a result of DOC addition occurred at day 2. Chlorophyll a did not significantly differ between treatments. An increase in zooplankton density was recorded in the DOC treatment relative to the control at day 10. This study supports the contention that increased DOC delivery with river inflows through environmental flow allocations will stimulate heterotrophic bacterioplankton production in the upper Hunter Estuary.  相似文献   
99.
We have determined U-Pb ages, trace element abundances and Hf isotopic compositions of approximately 1000 detrital zircon grains from the Mississippi, Congo, Yangtze and Amazon Rivers. The U-Pb isotopic data reveal the lack of >3.3 Ga zircons in the river sands, and distinct peaks at 2.7-2.5, 2.2-1.9, 1.7-1.6, 1.2-1.0, 0.9-0.4, and <0.3 Ga in the accumulated age distribution. These peaks correspond well with the timing of supercontinent assembly. The Hf isotopic data indicate that many zircons, even those having Archean U-Pb ages, crystallized from magmas involving an older crustal component, suggesting that granitoid magmatism has been the primary agent of differentiation of the continental crust since the Archean era. We calculated Hf isotopic model ages for the zircons to estimate the mean mantle-extraction ages of their source materials. The oldest zircon Hf model ages of about 3.7 Ga for the river sands suggest that some crust generation had taken place by 3.7 Ga, and that it was subsequently reworked into <3.3 Ga granitoid continental crust. The accumulated model age distribution shows peaks at 3.3-3.0, 2.9-2.4, and 2.0-0.9 Ga.The striking attribute of our new data set is the non-uniformitarian secular change in Hf isotopes of granitoid crusts; Hf isotopic compositions of granitoid crusts deviate from the mantle evolution line from about 3.3 to 2.0 Ga, the deviation declines between 2.0 and 1.3 Ga and again increases afterwards. Consideration of mantle-crust mixing models for granitoid genesis suggests that the noted isotopic trends are best explained if the rate of crust generation globally increased in two stages at around (or before) 3.3 and 1.3 Ga, whereas crustal differentiation was important in the evolution of the continental crust at 2.3-2.2 Ga and after 0.6 Ga. Reconciling the isotopic secular change in granitoid crust with that in sedimentary rocks suggests that sedimentary recycling has essentially taken place in continental settings rather than active margin settings and that the sedimentary mass significantly grew through addition of first-cycle sediments from young igneous basements, until after ∼1.3 Ga when sedimentary recycling became the dominant feature of sedimentary evolution. These findings, coupled with the lack of zircons older than 3.3 Ga in river sands, imply the emergence of large-scale continents at about 3.3 Ga with further rapid growth at around 1.3 Ga. This resulted in the major growth of the sedimentary mass between 3.3 and 1.3 Ga and the predominance of its cannibalistic recycling later.  相似文献   
100.
The redox state of Precambrian shallow seas has been linked with material cycle and evolution of the photosynthesis-based ecosystem. Iron is a redox-sensitive element and exists as a soluble Fe(II) species or insoluble Fe(III) species on Earth’s surface. Previous studies have shown that the iron isotopic ratio of marine sedimentary minerals is useful for understanding the ocean redox state, although the redox state of the Archean shallow sea is poorly known. This is partly because the conventional bulk isotope analytical technique has often been used, wherein the iron isotopic record may be dampened by the presence of isotopically different iron-bearing minerals within the same sample. Here we report a microscale iron isotopic ratio of individual pyrite grains in shallow marine stromatolitic carbonates over geological time using a newly developed, near-infrared femtosecond laser ablation multicollector ICP-MS technique (NIR-fs-LA-MC-ICP-MS).We have determined that the grain-scale iron isotopic distribution of pyrite from coeval samples shows a bimodal (2.7 and 2.3 Ga) or unimodal pattern (2.9, 2.6, and 0.7 Ga). In particular, pyrite from the 2.7 Ga Fortescue Group shows a unique bimodal distribution with highly positive (+1.0‰ defined as Type 1) and negative δ56Fe values (−1.8‰ defined as Type 2). Type 1 and 2 pyrites occasionally occur within different siliceous layers in the same rock specimen. Layer-scale iron isotopic heterogeneity indicates that the iron isotopic ratios of the two types of pyrite are not homogenized by diagenesis after deposition. Some cubic pyrites have a core with a positive δ56Fe value (1‰) and a rim with a crustal δ56Fe value (0‰). The observed isotopic zoning suggests that the positive δ56Fe value is a primary signature at the time of stromatolite formation, while secondary pyrite precipitated during diagenesis.The positive δ56Fe value of Type 1 and the large iron isotopic difference between Type 1 and 2 (2.8‰.) suggest partial Fe(II) oxidation in the 2.7-Ga shallow sea, i.e., pyritization of 56Fe-enriched ferric oxyhydroxide (Type 1) and 56Fe depleted Fe2+aq in seawater (Type 2). Type 2 pyrite was probably not produced by microbial iron redox cycling during diagenesis because this scenario requires a higher abundance of pyrite with δ56Fe of 0‰ than of −1.8‰. Consequently, the degree of Fe(II) oxidation in the 2.7-Ga shallow sea can be estimated by a Fe2+aq steady-state model. The model calculation shows that half the Fe2+aq influx was oxidized in the seawater. This implies that O2 produced by photosynthesis would have been completely consumed by oxidation of the Fe2+aq influx. Grain-scale iron isotopic distribution of pyrite could be a useful index for reconstructing the redox state of the Archean shallow sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号