首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   2篇
  国内免费   7篇
测绘学   5篇
大气科学   9篇
地球物理   53篇
地质学   51篇
海洋学   30篇
天文学   27篇
综合类   2篇
自然地理   15篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   9篇
  2008年   12篇
  2007年   17篇
  2006年   12篇
  2005年   5篇
  2004年   11篇
  2003年   5篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   5篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1970年   3篇
  1966年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
31.
32.
A delayed plastic model, based on the theory of plasticity, is proposed to represent the time‐dependent behaviour of materials. It is assumed in this model that the stress can lie outside the yield surface and the conjugate stress called static stress is defined on the yield surface. The stress–strain relation is calculated based on the plastic theory embedding the static stress. Thus, the stress–strain relation of the model practically corresponds to that of the inviscid elastoplastic model under fairly low rate deformation. The delayed plastic model is coupled with the Cam‐clay model for normally consolidated clays. The performance of the model is then examined by comparing the model predictions with reported time‐dependent behaviour of clays under undrained triaxial conditions. It is shown that the model is capable of predicting the effect of strain rate during undrained shear and the undrained creep behaviour including creep rupture. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
33.
Flapping motions of the magnetotail with an amplitude of several earth radii are studied by analysing the observations made in the near (x = ?25 ~ ?30 RE and the distant (x? ?60 RE) tail regions. It is found that the flapping motions result from fluctuations in the interplanetary magnetic field, especially Alfvénic fluctuations, when the magnitude of the interplanetary magnetic field is larger than ~10 γ and they propagate behind the Earth with the solar wind flow. Flappings tend to be observed in early phases of the magnetospheric substorm, and they have two fundamental modes with periods of ~200 and ~500 sec. In some limited cases a good correspondence with the long period micropulsations (Pc5) in the polar cap region is observed. These observational results are explained by the model in which the Alfvénic fluctuations in the solar wind penetrate into the magnetosphere along the connected interplanetary-magnetospheric field lines. The characteristics of the flapping reveal that the geomagnetic tail is a good resonator for the hydromagnetic disturbances in the solar wind.  相似文献   
34.
We investigate the effect of modified gravity on cluster abundance and the Sunyaev–Zel'dovich (SZ) angular power spectrum. Our modified gravity is based on a phenomenological extension of the Dvali–Gabadadze–Porrati model which includes two free parameters characterizing deviation from Λ cold dark matter cosmology. Assuming that Birkhoff's theorem gives a reasonable approximation, we study the spherical collapse model of structure formation and show that while the growth function changes to some extent, modified gravity gives rise to no significant change in the linear density contrast at collapse time. The growth function is enhanced in the so called normal branch, while in the 'self-accelerating' branch it is suppressed. The SZ angular power spectrum is computed in the normal branch, which allows us to put observational constraints on the parameters of the modified gravity model using small scale cosmic microwave background observation data.  相似文献   
35.
Carbonate sediments of mid-Cretaceous platforms on Allison and Resolution Guyots, Mid-Pacific Mountains (ODP Leg 143, Sites 865, 866, 867 and 868) and those of upper Oligocene to Pliocene reefs of the Kita-daito-jima Borehole were studied. The mid-Cretaceous platforms abound with abiotic (?) precipitates (ooids) and microbial carbonate grains/sediments (oncoids and ‘algal’ laminites), whereas the Cenozoic reefs consist mainly of coral and non-geniculate coralline algae, major frame-builders, benthic foraminifers and codiacean alga (Halimeda). There exists a remarkable difference in a mode of calcification between the mid-Cretaceous platforms and Cenozoic reefs. The major reef-builders of Cenozoic reefs precipitated carbonates within closed to semiclosed spaces within their bodies. In contrast, the mid-Cretaceous platforms contain abundant grains/sediments formed by chemical (?) precipitations and biotic extracellular calcification. This contrasting feature reflects different modes of biogeochemical cycles between the mid-Cretaceous and Cenozoic. Increased CO2 (degassed by active volcanism) and resultant high temperature and intensive weathering may have brought high concentration of Ca2+ and HCO3? into the mid-Cretaceous sea, which enhanced abiotic and extracellular calcification. Inverse processes are true for the Cenozoic.  相似文献   
36.
Respiration, ammonia excretion and chemical composition data [water content, ash, carbon (C), nitrogen (N) and C:N ratios] of 16–43 pelagic decapods from epipelagic through abyssopelagic zones of the world’s oceans were compiled. For respiration, the independent variables including body dry mass, habitat temperature and sampling depth were all significant predictors of the empirical regression model, whereas the former two variables were significant predictors of the theoretical regression model. For ammonia excretion, body dry mass and habitat temperature were significant predictors of both regression models. Overall, these variables accounted for 68–87 % of the variance in the data. Atomic O:N ratios (respiration:ammonia excretion) ranged from 9.1 to 91 (median 16.4), and no appreciable effects of the three variables were detected. Body composition components were not significantly affected by the three variables, except positive effects of habitat temperature on ash and negative effects of sampling depth on N composition. As judged by C:N ratios, protein was considered to be the major organic component of most pelagic decapods. Some pelagic decapods from >500 m depth exhibited high C:N ratios (8.6–10.2), suggesting a deposition of lipids in the body. Comparison of the present results with global bathymetric models of euphausiids and mysids revealed great similarities among these pelagic crustacean taxa characterized by common behavioral and morphological features such as active swimming, developed compound eyes and respiratory gill organ.  相似文献   
37.
To investigate temporal and spatial evolution of global geomagnetic field variations from high-latitude to the equator during geomagnetic storms, we analyzed ground geomagnetic field disturbances from high latitudes to the magnetic equator. The daytime ionospheric equivalent current during the storm main phase showed that twin-vortex ionospheric currents driven by the Region 1 field-aligned currents (R1 FACs) are intensified significantly and expand to the low-latitude region of-30~ magnetic latitude. Centers of the currents were located around 70~ and 65~ in the morning and afternoon, respectively. Corresponding to intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equa- tor. During the recovery phase, the daytime equivalent current showed that two new pairs of twin vortices, which are different from two-cell ionospheric currents driven by the R1 FACs, appear in the polar cap and mid latitude. The former led to enhanced north- ward Bz (NBZ) FACs driven by lobe reconnection tailward of the cusps, owing to the northward interplanetary magnetic field (IMF). The latter was generated by enhanced Region 2 field-aligned currents (R2 FACs). Associated with these magnetic field variations in the mid-latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature, produced by the westward equatorial electrojet current caused by the dusk-to-dawn electric field.  相似文献   
38.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   
39.
The Changning-Menglian Belt in West Yunnan, Southwest China is well-known as a closed remnant of the Paleo-Tethys Ocean in East Asia (Wu et al., 1995; Liu et al., 1996). It is delineated to the east with the Lincang Massif by the Changning-Shuangjiang Fault and to the west with the Baoshan Block by the Kejie-Nandinghe Fault, and is generally subdivided into three zones: east, central, and west zones. In the central zone, various kinds of oceanic rocks such as harzburgite, cumulate websterite, gabbro, both mid-oceanic ridge basalt and oceanic island basalt, Devonian-Triassic radiolarian chert, and Carbonifer-ous-Permian massive and huge carbonates with basaltic effusives as their pedestal are exposed (Liu et al., 1991, 1996; Wu et al., 1995; Ueno et al., 2003). These Central zone rocks are now interpreted to have been emplaced as nappes structurally overlying the East and West zones, which are considered as consisting mainly of passive margin sediments of the Baoshan Block (Wu, 1991; Ueno et al., 2003).  相似文献   
40.
New geochemical and Sr–Nd isotopic data for the Iratsu eclogite and surrounding metamorphic rocks of the Sanbagawa belt, Japan, show that, while the protoliths of the metamorphic rocks formed in a variety of tectonic settings, the Iratsu body represents a deeply subducted and accreted island arc. The igneous protoliths of eclogites and garnet amphibolites were probably generated from a mantle source that had components of both a depleted mantle modified by slab-released fluid (as seen in a negative Nb anomaly) and an enriched mantle, similar to that of ocean island basalts (OIB). Fractional crystallization modeling indicates that the protoliths of some garnet clinopyroxenites from the Iratsu body are cumulates from a basaltic magma that crystallized under high O2 and H2O fugacities in the middle to lower crust. The source characteristics and crystallization conditions suggest that the protoliths of the Iratsu rocks formed in an oceanic island arc. Quartz eclogites from the marginal zone of the Iratsu body have geochemical signatures similar to turbidites from the Izu–Bonin island arc (as seen in a negative Nb anomaly and a concave REE pattern). The protoliths might be volcaniclastic turbidites that formed in a setting proximal to the oceanic island arc. Geochemical and isotopic signatures of the surrounding mafic schists are similar to normal (N-) and enriched (E-) mid-ocean-ridge basalt (MORB), and distinct from the rocks from the Iratsu body. The protoliths of the mafic schists likely formed in a plume-influenced mid-ocean ridge or back-arc basin. Pelitic schists from the surrounding rocks and pelitic gneisses from the marginal zone of the Iratsu body have evolved, continental geochemical signatures (as seen in a negative εNd(t) value (~?5)), consistent with their origin as continent-derived trench-fill turbidites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号