首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   12篇
  国内免费   1篇
大气科学   10篇
地球物理   33篇
地质学   31篇
海洋学   9篇
天文学   12篇
自然地理   5篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   3篇
  2013年   14篇
  2012年   2篇
  2011年   3篇
  2010年   7篇
  2009年   7篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1984年   1篇
  1973年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
91.
92.
Efficiency of hydrological models mostly depends on the quality of the calibration performed prior to use. In this paper, an automatic calibration framework for the distributed hydrological model HYDROTEL is proposed. The calibration procedure was performed for three watersheds characterized with different hydroclimatological conditions: the Sassandra located in Ivory Coast, Africa, and the Montmorency and Beaurivage watersheds located in Quebec (Canada). Results of one‐a‐time (OAT) sensitivity analysis showed that the order of the most sensitive parameters differs for each watershed. Thus, the sensitivity depends on the hydroclimatic and physiographic characteristics of the watersheds. Co‐linearity indices showed that all model parameters were identifiable, that is, none of the studied parameters could be explained by a combination of the other parameters. Following these findings, an automatic calibration was run. Results indicated there was good agreement between simulated and measured streamflows at the outlet of each watershed; Nash–Sutcliffe efficiency (NSE) ranging between 0.77 and 0.92 and R2 ranging from 0.87 to 0.97. When comparing NSE and R2 values obtained using a process‐oriented, multiple‐objective, manual calibration strategy, a slight increase in model efficiency was reached with the automatic calibration procedure (4.15% for NSE and 2.95% for R2) improving predictions of peak flows for the Montmorency and Beaurivage watersheds (temperate climate conditions) and flows beyond the rainfall season in the Sassandra watershed. The proposed automatic calibration procedure introduced in this paper may be applied to other distributed hydrological model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
93.
Distributed hydrological models require a detailed definition of a watershed's internal drainage structure. The conventional approach to obtain this drainage structure is to use an eight flow direction matrix (D8) which is derived from a raster digital elevation model (DEM). However, this approach leads to a rather coarse drainage structure when monitoring or gauging stations need to be accurately located within a watershed. This is largely due to limitations of the D8 approach and the lack of information over flat areas and pits. The D8 approach alone is also unable to differentiate lakes from plain areas.

To avoid these problems a new approach, using a digital river and lake network (DRLN) as input in addition to the DEM, has been developed. This new approach allows for an accurate fit between the DRLN and the modelled drainage structure, which is represented by a flow direction matrix and a modelled watercourse network. More importantly, the identification of lakes within the modelled network is now possible. The proposed approach, which is largely rooted in the D8 approach, uses the DRLN to correct modelled flow directions and network calculations. For DEM cells overlapped by the DRLN, flow directions are determined using DRLN connections only. The flow directions of the other DEM cells are evaluated with the D8 approach which uses a DEM that has been modified as a function of distance to the DRLN.

The proposed approach has been tested on the Chaudière River watershed in southern Québec, Canada. The modelled watershed drainage structure showed a high level of coherence with the DRLN. A comparison between the results obtained with the D8 approach and those obtained by the proposed approach clearly demonstrated an improvement over the conventionally modelled drainage structure. The proposed approach will benefit hydrological models which require data such as a flow direction matrix, a river and lake network and sub-watersheds for drainage structure information.  相似文献   

94.
The Qinan Miocene loess-soil sequence (~22―6.2 Ma)[1] discovered from the Gansu Group[2] several years ago extends the well-known Quaternary loess-soil sequence and the late Tertiary Red Clay se-quence of the Loess Plateau to early Miocene epoch. Most recently, the Dongwan late Miocene–Pliocene loess-soil sequence (~7.1―3.5 Ma)[3] further extends the upper limit of the reported Qinan Miocene loess-soil sequence into the Pliocene. These extensions have great potentials for the study o…  相似文献   
95.
Petrov  G. A.  Tristan  N. I.  Borozdina  G. N.  Maslov  A. V. 《Doklady Earth Sciences》2019,489(1):1281-1284
Doklady Earth Sciences - The date of cessation of calc-alkaline volcanic complex accumulation within the Devonian (Frasnian) island arc in the Northern Urals was determined for the first time. It...  相似文献   
96.
We present a new numerical approach for simulating geomorphic and stratigraphic processes that combines open‐channel flow with non‐uniform sediment transport law and semi‐empirical diffusive mass wasting. It is designed to facilitate modelling of surface processes across multiple space‐ and time‐scales, and under a variety of environmental and tectonic conditions. The physics of open‐channel flow is primarily based on an adapted Lagrangian formulation of shallow‐water equations. The interaction between flow and surface geology is performed by a non‐uniform total‐load sediment transport law. Additional hillslope processes are simulated using a semi‐empirical method based on a diffusion approach. In the implementation, the resolution of flow dynamics is made on a triangulated grid automatically mapped and adaptively remeshed over a regular orthogonal stratigraphic mesh. These new methods reduce computational time while preserving stability and accuracy of the physical solutions. In order to illustrate the potential of this method for landscape and sedimentary system modelling, we present a set of three generic experiments focusing on assessing the influence of contrasting erodibilities on the evolution of an active bedrock landscape. The modelled ridges morphometrics satisfy established relationships for drainage network geometry and slope distribution, and provide quantitative information on the relative impact of hillslope and channel processes, sediment discharge and alluviation. Our results suggest that contrasting erodibility can stimulate autogenic changes in erosion rate and influence the landscape morphology and preservation. This approach offers new opportunities to investigate joint landscape and sedimentary systems response to external perturbations. The possibility to define and track a large number of materials makes the implementation highly suited to model source‐to‐sink problems where material dispersion is the key question that needs to be addressed, such as natural resources exploration and basin analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
97.
Morphodynamic models are used by river practitioners and scientists to simulate geomorphic change in natural and artificial river channels. It has long been recognized that these models are sensitive to the choice of parameter values, and proper calibration is now common practice. This paper investigates the less recognized impact of the choice of the model itself. All morphodynamic models purport to simulate the same flow and sediment dynamics, often relying on the same governing equations. Yet in solving these equations, the models have different underlying assumptions, for example regarding spatial discretization, turbulence, sediment inflow, lateral friction, and bed load transport. These differences are not always considered by the average model user, who might expect similar predictions from calibrated models. Here, a series of numerical simulations in meandering channels was undertaken to test whether six morphodynamic codes (BASEMENT, CCHE‐2D, NAYS, SSIIM‐1, TELEMAC‐2D and TELEMAC‐3D) would yield significantly different equilibrium bathymetries if subjected to identical, initial flow conditions. We found that, despite producing moderately similar velocity patterns on a fixed‐flat bed (regression coefficient r of 0.77 ± 0.20), the codes disagree substantially with respect to simulated bathymetries (r = 0.49 ± 0.31). We relate these discrepancies to differences in the codes' assumptions. Results were configuration specific, i.e. codes that perform well for a given channel configuration do not necessarily perform well with higher or lower sinuosity configurations. Finally, limited correlation is found between accuracy and code complexity; the inclusion of algorithms that explicitly account for the effects of local bed slope and channel curvature effects on transport magnitude and direction does not guarantee accuracy. The range of solutions obtained from the evaluated codes emphasizes the need for carefully considering the choice of code. We recommend the creation of a central repository providing universal validation cases and documentation of recognized fluvial codes in commonly studied fluvial settings. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
98.
The long term evolution of the metallic divided circle mounted on the Bordeaux meridian instrument is presented. Results of three independent determinations carried out in 1987 with different ambient temperatures show deviations the major part of which could be due to small malfunction of the photoelectric reading microscopes. The importance of a regular monitoring of the division errors is stressed.  相似文献   
99.
100.
We determined the Nd isotopic composition and the Sm/Nd ratios in a series of Australian shales ranging from 0.2 Gy to 3.3 Gy. The first result of this study is the constancy of the Sm/Nd ratio in these shales, as in granitoids. Secondly, the initial (143Nd/144Nd) ratio gives a regular curve decreasing through geological time. Both results confirm that shales are representative samples of the continental crust, when insoluble elements, like REE, are studied.We calculated their Nd model ages of crustal differentiation. The model ages regularly decrease with the stratigraphic ages and after 2 Gy, the curve flattens and tends to an asymptotic value at around 1.8 Gy. The significance of the shales is that they represent a mixture of continental materials and we consider the model age of such a mixture directly linked with the mean age of the continental portion feeding the sedimentary basin.From these results, we deduce a quantitative model of the growth curve of the continental source of the shales taking into account the effects of erosion which selectively sample recent mountains relative to shield areas. We propose that the results obtained here are representative of the whole Gondwana continent.Having studied the case of the Australian shales, we try to extend our study. First we applied our quantitative approach to the recent results obtained by O'Nions et al. on North Atlantic provinces. The continental growth curves obtained by our inversion procedure are quite distinct from the Australian shales showing the regional character of shales.With these two cases studied we try to compare our results with the already developed model for continental growth. The consideration of the surface conservative versus surface non-conservative models clearly show the non-uniqueness of the geological interpretation of the growth curve. On the other hand, we have calculated for each case the recycling rate versus geological time by comparing the growth curve with the Hurley-Rand province age curve. Such recycling increases with time in agreement with the data obtained on Nd and Sr initial ratios on granitoids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号