首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   8篇
  国内免费   6篇
测绘学   12篇
大气科学   5篇
地球物理   36篇
地质学   76篇
海洋学   10篇
天文学   14篇
综合类   3篇
自然地理   9篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   14篇
  2020年   9篇
  2019年   3篇
  2018年   8篇
  2017年   8篇
  2016年   10篇
  2015年   5篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   11篇
  2010年   11篇
  2009年   8篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有165条查询结果,搜索用时 375 毫秒
161.
Groundwater pollution by arsenic is a major health threat in suburban areas of Hanoi, Vietnam. The present study evaluates the effect of the sedimentary environments of the Pleistocene and Holocene deposits, and the recharge systems, on the groundwater arsenic pollution in Hanoi suburbs distant from the Red River. At two study sites (Linh Dam and Tai Mo communes), undisturbed soil cores identified a Pleistocene confined aquifer (PCA) and Holocene unconfined aquifer (HUA) as major aquifers, and Holocene estuarine and deltaic sediments as an aquitard layer between the two aquifers. The Holocene estuarine sediments (approximately 25–40 m depth, 9.6–4.8 cal ka BP) contained notably high concentrations of arsenic and organic matter, both likely to have been accumulated by mangroves during the Holocene sea-level highstand. The pore waters in these particular sediments exhibited elevated levels of arsenic and dissolved organic carbon. Arsenic in groundwater was higher in the PCA (25–94 μg/L) than in the HUA (5.2–42 μg/L), in both the monitoring wells and neighboring household tubewells. Elevated arsenic concentration in the PCA groundwater was likely due to vertical infiltration through the arsenic-rich and organic-matter-rich overlying Holocene estuarine sediments, caused by massive groundwater abstraction from the PCA. Countermeasures to prevent arsenic pollution of the PCA groundwater may include seeking alternative water resources, reducing water consumption, and/or appropriate choice of aquifers for groundwater supply.  相似文献   
162.
A key issue in the design of pile-supported structures on sloping ground is soil–pile interaction, which becomes more complicated in case of dynamic loading. This study aimed to evaluate the effect of slope on the dynamic behavior of pile-supported structures by performing a series of centrifuge tests. Three models were prepared by varying the slope and soil density of dry sand grounds. The mass supported on 3 by 3 group piles was shaken applying sinusoidal wave with various amplitudes. Test results showed that the location of maximum values and distribution shape of the bending moment below the ground surface varied noticeably with the pile position in the slope case. The relationship between the soil resistance and pile deflection (pyp loops) was carefully evaluated by applying the piecewise cubic spline method to fit the measured bending moment curves along piles. It was found that the shape of the pyp loops was irregular due to the effect of slope, and immensely influenced by the movement of the unstable zone. In addition, the effect of the pile group in the horizontal case was evaluated by comparing with the previously suggested curves that represent the relationship between the soil resistance and pile–soil relative displacement (py curves) to propose the multiplier coefficients.  相似文献   
163.
Natural Resources Research - Predicting and reducing blast-induced ground vibrations is a common concern among engineers and mining enterprises. Dealing with these vibrations is a challenging issue...  相似文献   
164.
Natural Resources Research - The primary purpose of this study was to develop a novel hybrid artificial intelligence model, with a robust performance, to predict ground vibration induced by bench...  相似文献   
165.
Coastal erosion has become a worldwide concern, typically in the densely populated Asian mega-river deltas. Severe coastal erosion in the southern Red River Delta(RRD) has been intensively studied. Coastal morphological change in the northern RRD was examined in detail through DEM(Digital Elevation Model) analysis based on time series of bathymetrical maps(1965–2004) and Landsat images(1975–2015) in this study. The results show that the northern RRD is featured by rapid coastal accretion in the past few decades, although suspended sediment flux has dropped by roughly 60% after the completeness of Hoa Binh Dam(HBD) in 1988 and relative sea level rose at 1.9 mm yr~(-1). However, accretion at the outer part of subtidal shoals and platforms was observed to slow down quickly or even turned into erosion in the last two decades. The resuspended sediments from the erosion zone can be transported landward to replenish the inner coastal zone, keeping the latter accretion in the near future to compensate for the sediment discharge decrease from the river. However, this lag effect should be terminated soon if other adverse effects go worse, e.g., damming rivers, sea-level rising, strengthening storms, land reclamation and other poor-designed coastal engineering. Coastal planners and managers should pay full attention to these changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号